Test of exogenous corticosteroid use on TSC22D3 expression

plot TSC22D3 mRNA expression with steroid use

Generate Figure S5D

# input is the pseudobulk eset_list object
eset_list <- readRDS("output/dge_lists/pbulk_eset_list_normalized_WCTcourse_metafiltered.rds")

combined_genes <- c("TSC22D3")
gene_avg_df <- getgsvascore_list_df(eset_list, combined_genesets = combined_genes)
## [1] "B_Mem"
## [1] "B_Naive"
## [1] "CD4_Mem"
## [1] "CD4_Naive"
## [1] "CD8_Mem"
## [1] "CD8_Naive"
## [1] "cDC"
## [1] "DNT"
## [1] "DPT"
## [1] "gammadeltaT"
## [1] "Granulocytes"
## [1] "MAIT"
## [1] "Mono_Classical"
## [1] "Mono_Intermediate"
## [1] "Mono_NonClassical"
## [1] "NK_CD16hi"
## [1] "NK_CD56hiCD16lo"
## [1] "NK_CD56loCD16lo"
## [1] "PB_Plasmablasts"
## [1] "pDC"
## [1] "Platelets"
## [1] "RBC"
## [1] "Tcell"
## [1] "TissueResMemT"
## [1] "Treg"
gene_avg_df_T0 <- gene_avg_df %>% 
  rownames_to_column("sample") %>% 
  filter(Timepoint %in% c("T0","HC"), pc1_group %in% c("HC", "PC1_low", "PC1_high")) %>%
  filter(!str_detect(sample, "^CHI014")) %>%
  filter(celltype %in% c("Mono_Classical", "NK_CD16hi"))
gene_avg_df_T0$severity_outcome = as.character(gene_avg_df_T0$severity_outcome)
gene_avg_df_T0$steroid.use = factor(gene_avg_df_T0$steroid.use, levels = c("HC", "FALSE", "TRUE"))
jitter <- position_jitter(width = 0.2, height = 0.1)
# filter out low cell number samples not included in the test
gene_avg_df_T0 <- filter(gene_avg_df_T0, n_barcodes>7)
p <- ggplot(gene_avg_df_T0, aes(x = steroid.use, y = TSC22D3))+
    geom_boxplot(outlier.shape=NA, aes(color = steroid.use))+
    geom_point(aes(shape = severity_outcome, group = 1, color = steroid.use), position = jitter)+
    scale_color_manual(name="steroid.use",values=c("#a2de96", "#3ca59d", "#e79c2a"))+
    scale_shape_manual(values = c(15:16,3,17:18))+
    facet_wrap(~celltype, scales = "free_y")+
    theme(axis.text.x = element_text(angle = 90))+
    theme_bw() 

p

# ggsave("output/TSC22D3.steroiduse.pdf", plot = p, device = "pdf", width = 7, height = 2.5)

Anova test of the effect of steroid use in COVID-19 patients accounting for severity(PC1/DSM), TSO, Age and experimental batch

gene_avg_df_T0_mono <- gene_avg_df_T0 %>% filter(celltype == "Mono_Classical") 
gene_avg_df_T0_NK <- gene_avg_df_T0 %>% filter(celltype == "NK_CD16hi") 
gene_avg_df_T0_mono_covid <- gene_avg_df_T0_mono %>% filter(steroid.use != "HC")
gene_avg_df_T0_mono_stat <- car::Anova(aov(TSC22D3 ~ steroid.use+PC1+days_since_onset+Age+Batch, gene_avg_df_T0_mono_covid))
gene_avg_df_T0_mono_stat
## Anova Table (Type II tests)
## 
## Response: TSC22D3
##                  Sum Sq Df F value Pr(>F)
## steroid.use      0.2699  1  1.1513 0.3002
## PC1              0.2824  1  1.2045 0.2897
## days_since_onset 0.0950  1  0.4054 0.5339
## Age              0.1032  1  0.4402 0.5171
## Batch            0.0797  2  0.1699 0.8453
## Residuals        3.5165 15
gene_avg_df_T0_NK_covid <- gene_avg_df_T0_NK %>% filter(steroid.use != "HC")
gene_avg_df_T0_NK_stat <- car::Anova(aov(TSC22D3 ~ steroid.use+PC1+days_since_onset+Age+Batch, gene_avg_df_T0_NK_covid))
gene_avg_df_T0_NK_stat
## Anova Table (Type II tests)
## 
## Response: TSC22D3
##                  Sum Sq Df F value Pr(>F)
## steroid.use      0.0185  1  0.0377 0.8484
## PC1              0.0005  1  0.0010 0.9747
## days_since_onset 0.4168  1  0.8510 0.3692
## Age              0.0355  1  0.0724 0.7911
## Batch            0.6152  2  0.6280 0.5456
## Residuals        8.3275 17
sI <- sessionInfo()
utils:::print.sessionInfo(sI[-c(10,11)])
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6
## 
## Matrix products: default
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] car_3.0-6           carData_3.0-3       reshape2_1.4.3     
##  [4] Biobase_2.46.0      BiocGenerics_0.32.0 forcats_0.4.0      
##  [7] stringr_1.4.0       dplyr_0.8.4         purrr_0.3.3        
## [10] readr_1.3.1         tidyr_1.0.2         tibble_3.0.3       
## [13] ggplot2_3.3.2       tidyverse_1.3.0     plyr_1.8.5         
## [16] matrixStats_0.55.0 
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.3        lubridate_1.7.4   assertthat_0.2.1  digest_0.6.25    
##  [5] R6_2.4.1          cellranger_1.1.0  backports_1.1.5   reprex_0.3.0     
##  [9] evaluate_0.14     httr_1.4.1        pillar_1.4.3      rlang_0.4.7      
## [13] curl_4.3          readxl_1.3.1      rstudioapi_0.11   data.table_1.12.8
## [17] rmarkdown_2.1     labeling_0.3      foreign_0.8-75    munsell_0.5.0    
## [21] broom_0.7.0       compiler_3.6.2    modelr_0.1.6      xfun_0.12        
## [25] pkgconfig_2.0.3   htmltools_0.4.0   tidyselect_1.0.0  rio_0.5.16       
## [29] fansi_0.4.1       crayon_1.3.4      dbplyr_1.4.2      withr_2.1.2      
## [33] grid_3.6.2        jsonlite_1.6.1    gtable_0.3.0      lifecycle_0.2.0  
## [37] DBI_1.1.0         magrittr_1.5      scales_1.1.0      zip_2.0.4        
## [41] cli_2.0.2         stringi_1.4.6     farver_2.0.3      fs_1.3.1         
## [45] xml2_1.2.2        ellipsis_0.3.0    generics_0.0.2    vctrs_0.3.4      
## [49] openxlsx_4.1.4    tools_3.6.2       glue_1.3.1        hms_0.5.3        
## [53] abind_1.4-5       yaml_2.2.1        colorspace_1.4-1  rvest_0.3.5      
## [57] knitr_1.28        haven_2.2.0