To generate intermediate files see ../differential_expression/covid_de_pipeline
library(tidyverse)
## ── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.3.0 ✔ purrr 0.3.3
## ✔ tibble 2.1.3 ✔ dplyr 0.8.5
## ✔ tidyr 1.0.2 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(viridis)
## Loading required package: viridisLite
library(fgsea)
## Loading required package: Rcpp
library(cowplot)
##
## ********************************************************
## Note: As of version 1.0.0, cowplot does not change the
## default ggplot2 theme anymore. To recover the previous
## behavior, execute:
## theme_set(theme_cowplot())
## ********************************************************
gluc_model_genes <- readRDS("input/genesets/glucocorticoid_sets/glucResponseGenesforModel.Rds")
geneset.list <- list(glucResponseGenesforModel = gluc_model_genes)
files_toptab <- c(Mono_Classical = "data/CITE5p/all_batches/differential_expression/2020_08_09/sample_groups/t0_covid_only/results/PC1/toptables/PC1/Unsorted-WCTcoursecelltype/Mono_Classical--model@PC1--coef@PC1--toptab.tsv",
NK_CD16hi = "data/CITE5p/all_batches/differential_expression/2020_08_09/sample_groups/t0_covid_only/results/PC1/toptables/PC1/Unsorted-WCTcoursecelltype/NK_CD16hi--model@PC1--coef@PC1--toptab.tsv"
)
toptab_list <- lapply(files_toptab, function(path){
read_tsv(path)
})
## Parsed with column specification:
## cols(
## gene = col_character(),
## logFC = col_double(),
## AveExpr = col_double(),
## t = col_double(),
## P.Value = col_double(),
## adj.P.Val = col_double(),
## B = col_double()
## )
## Parsed with column specification:
## cols(
## gene = col_character(),
## logFC = col_double(),
## AveExpr = col_double(),
## t = col_double(),
## P.Value = col_double(),
## adj.P.Val = col_double(),
## B = col_double()
## )
fgsea_list <- lapply(toptab_list, function(toptab){
t.stat <- toptab$t
names(t.stat) <- toptab$gene
fgseaRes <- fgsea(pathways = geneset.list,
stats = t.stat,
minSize=15,
maxSize=500,
nperm=100000)
})
plot_list <- list()
for(nm in names(toptab_list)){
pval <- fgsea_list[[nm]] %>% pull(pval) %>%
round(3)
ranks <- toptab_list[[nm]] %>%
select(gene, t) %>%
deframe()
plot_list[[nm]] <-
plotEnrichment(stats = ranks, pathway = gluc_model_genes) +
ylim(c(-.6, .6)) +
ggtitle(paste(nm, "\nDSM\ngluccocorticoid signature")) +
annotate("text", x=Inf, y = Inf, label = paste("p =", pval), vjust=1, hjust=1)
}
#combined_dat %>% filter(pathway == path & coef == coeff.) %>% as.data.frame()
p <- plot_grid(plotlist = plot_list, ncol = 2)
# if would prefer pdf
#FIG_fgsea_OUT_PATH <- "plots/CITE5p/all_batches/paper_figures/steroid_dsm_fgsea_curve.pdf"
#ggsave(plot = p, filename = FIG_fgsea_OUT_PATH, height = 4, width = 8)
print(p)