see ../../../validation_schulteschrepping/differential_expression/
library(fgsea)
## Loading required package: Rcpp
library(tidyverse)
## ── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.3.0 ✔ purrr 0.3.3
## ✔ tibble 2.1.3 ✔ dplyr 0.8.5
## ✔ tidyr 1.0.2 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
DE_RES_IN_PATH <- "data/externalData/SchulteSchrepping/differential_expression_cohort1_no_cutoffs/sample_groups/t0_plus_healthy/results/healthy_vs_covid/toptables/COVID-Healthy/id.celltype/8_pDCs--model@healthy_vs_covid--coef@COVID-Healthy--toptab.tsv"
LE_IN_PATH <- "input/genesets/pdc_apoptosis_le/pDC_PC1_covid_LE.rds"
#FIG_OUT_PATH <- "plots/validations/SchulteSchrepping/pdc_apoptosis_no_cell_number_cutoff/pdc_apoptosis_cohort1_using_our_LE_no_cutoff_covid-healthy.pdf"
#dir.create(dirname(FIG_OUT_PATH), recursive = TRUE)
toptab <- read_tsv(DE_RES_IN_PATH)
## Parsed with column specification:
## cols(
## gene = col_character(),
## logFC = col_double(),
## AveExpr = col_double(),
## t = col_double(),
## P.Value = col_double(),
## adj.P.Val = col_double(),
## B = col_double()
## )
genes <- readRDS(LE_IN_PATH)
stat_vec <- toptab %>% select(gene, t) %>% deframe()
enrich_res <- fgsea(pathways = list(pdc_apoptosis_le = genes),
stats = stat_vec, nperm = 10000)
pval <- round(enrich_res$pval, 5)
p <- plotEnrichment(pathway = genes, stats = stat_vec) +
annotate("text", x=Inf, y = Inf, label = paste("p =", pval), vjust=1, hjust=1) +
ggtitle("cohort1 pDC apoptosis using LE from our data - no cell # cutoff")
#ggsave(plot = p, filename = FIG_OUT_PATH, width = 4, height = 4)
print(p)
DE_RES_IN_PATH <- "data/externalData/SchulteSchrepping/differential_expression_cohort1_no_cutoffs/sample_groups/t0_covid_only/results/severity/toptables/severe-mild/id.celltype/8_pDCs--model@severity--coef@severe-mild--toptab.tsv"
#FIG_OUT_PATH <- "plots/validations/SchulteSchrepping/pdc_apoptosis_no_cell_number_cutoff/pdc_apoptosis_cohort1_using_our_LE_no_cutoff_severe-mild.pdf"
#dir.create(dirname(FIG_OUT_PATH), recursive = TRUE)
toptab <- read_tsv(DE_RES_IN_PATH)
## Parsed with column specification:
## cols(
## gene = col_character(),
## logFC = col_double(),
## AveExpr = col_double(),
## t = col_double(),
## P.Value = col_double(),
## adj.P.Val = col_double(),
## B = col_double()
## )
stat_vec <- toptab %>% select(gene, t) %>% deframe()
enrich_res <- fgsea(pathways = list(pdc_apoptosis_le = genes),
stats = stat_vec, nperm = 10000)
## Warning in fgsea(pathways = list(pdc_apoptosis_le = genes), stats = stat_vec, : There are ties in the preranked stats (0.02% of the list).
## The order of those tied genes will be arbitrary, which may produce unexpected results.
pval <- round(enrich_res$pval, 5)
p <- plotEnrichment(pathway = genes, stats = stat_vec) +
annotate("text", x=Inf, y = Inf, label = paste("p =", pval), vjust=1, hjust=1) +
ggtitle("cohort1 pDC apoptosis severe vs mild enrichment using LE from our data \nno cell# cutoff")
#ggsave(plot = p, filename = FIG_OUT_PATH, height = 4, width = 4)
print(p)