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Define "Metagenomics”

= Metagenomics: Refers to the idea that the
collection of genes (the metagenome),
obtained directly from a community in its

natural habitat (the microbiome), can provide Example microbiomes:
an understanding of the functional and :\ a
taxonomic traits of the whole community. 1\ QE; e

= NGS made the field of metagenomiCS pOSSible Human Digestive  Aquatic Marine

= Metagenomics bypasses the need for isolation systerm
or cultivation of individual microbes.

= Allows for exploration of the structure
(abundance & identities), interactions,
strategies (communication, survival, etc.),
functionality and dynamics of a community

National Institute of
NIH Allergy and
Infectious Diseases

https://www.ncbi.nlm.nih.gov/books/NBK54011/
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Reference genomic databases

A reference genomic databases are a collection of DNA sequences that are idealistic genomic
representations of recognized organisms. These sequences are sourced either from individual cultivated

organisms (a type strain representing that lineage) or in case of more complex organisms — from multiple
organisms from the same species (e.g. human).
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= RefDBs allow for

Taxonomic characterization of specific species, through
identification of conserved genes within that organism’s

%
) ﬂ genome (genetic markers).
‘*—% ¥ e - Functional characterization of genes/proteins through
L= ! -, o 55 ' understanding of known gene/proteins

d‘fﬂ- _E
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Shotgun

Shotgun Strategy 1
ALL the DNA from ALL the genomes ,
within the ENTIRE community, is
fragmented to the “bite-size” capacity of
a sequencing platform. ALL DNA is 41

sequenced. The sequences are used to 5

explore taxonomic composition and 61

functional capacity of the entire
community

Long-read Strategy
ALL the DNA from ALL the genomes
within the ENTIRE community, is
sequenced in “large bites”. The
sequences are used to explore
taxonomic composition and functional
capacity of the entire community
Common platforms
For long reads:
o PacBio, Nanopore (Minlon)
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Common platforms
For Short reads: For Short reads:
o lllumina HiSeq, o

NextSeq, NovoSeq

Amplicon

Amplicon Strategy
One gene (a marker gene or a fraction of

~it) from ALL the genes from within ALL the

genomes of ALL the organisms in a

© community, is targeted for amplification. Its

sequence is used to explore the taxonomic
composition of the entire community.

Common marker genes:

v .'.; > For Bacterial & Archaeal organisms:

o 16S rRNA gene
» For Eukaryotic organisms:
o 18S rRNA gene (less conserved)
o ITS: internal transcribed spacer
region

Common platforms

lllumina MiSeq, NextSeq
o TermoFisher lonTorrent

JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 2007, 45 (9), https://jcm.asm.org/content/45/9/2761.short
PNAS April 17, 2012 109 (16) 6241-6246; https://doi.org/10.1073/pnas. 1117018109

Nature Biotechnology. Sept. 2017. https://doi.org/10.1038/nbt.3935



https://jcm.asm.org/content/45/9/2761.short
https://doi.org/10.1073/pnas.1117018109
https://doi.org/10.1038/nbt.3935

Shotgun meta-genomics

SHOTGUN
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Whole metagenome
sequencing (WmGS)
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Questions addressable by shotqun sequencing

= What organisms are present in microbiome 1 and in what proportion? (community structure) N
= What is the natural variation of microbiome 17?

= How is microbiome 1 different from microbiome 2 in its taxonomic composition? Meta-
= Are there more of organism 1 in microbiome 1 than in microbiome B?

= Which microbiome has higher diversity of bugs?

= What is the natural core microbiome (non-variable faction) in microbiome 1 vs microbiome 27?

= How does the diversity of community change with factor 1 or factor 2?

=  Which organism responds to factors 1 or 27 _J

4

= What additional information can we get from shotgun sequencing ?

= |f we have the near-full genomes of all organisms in 2 communities, what kind of questions can we
answer?

taxon-
omics

National Institute of
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Questions addressable by shotqun sequencing

= What organisms are present in microbiome 1 and in what proportion? (community structure) N
= What is the natural variation of microbiome 17?

= How is microbiome 1 different from microbiome 2 in its taxonomic composition? Meta-
= Are there more of organism 1 in microbiome 1 than in microbiome B?

= Which microbiome has higher diversity of bugs?

= What is the natural core microbiome (non-variable faction) in microbiome 1 vs microbiome 2?

= How does the diversity of community change with factor 1 or factor 2?

=  Which organism responds to factors 1 or 27 /

4

= What were organisms 1, 2 or 3 capable of doing (functional capacity)?
= What is the internal diversity of organism 1 (strains)?
= How is the community functionally responding to factor 1?

= What fraction of the microbiome are presented by organisms from other domains (e.g. viral,
eukaryotic composition)?

= What is the reservoir of genes within a community used to degrade substrate 1? What are
these genes?

wiggoggpmmggity has more genes or higher diversity of genes involved in function A?

taxon-
omics

Allergy and
Infectious Diseases




Caveats of shotgun sequencing approach

= Contamination from:
« Organisms with relatively huge

One genome =

genomes (e.g. host DNA) One picture
= Computational requirements
- Large amounts of data * !‘;;;!‘*ﬁ
« Computationally heavy steps (e.g. F . ;’-&,& *h‘ \
assembly) ) *‘#-3. xfed 5
* Functional & taxonomic annotations ¥ 3—)_‘:_ ‘:1-,‘
of non-coding sequences 3. Metagenome = .
- Genes with unknown taxonomy & of [ ple piotures t‘,
function 2t ¥ L
,&ﬂ- :‘.#&*
= Very complex genes would have limited .!;-7'.' *ﬁi’ &
detectability .q'*'t- *‘*38,;- ~ )
t‘@.*;.* | PN
Gt

National Institute of *‘ |
Allergy and . \!‘*ﬁﬁy
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Library preparation for shotgun sequencing

. Ligation with barcodes
DNA L , Fragmentation End A .
LN i & sequencing adaptors i :
extraction A ¥ — - e-\-y Repalr A quENCing AdapIOrs o s e—— "
—p 158’ P s — O >
’ e -
L’l s AT—— G A e (5
gt
MUIt|p|e AT ’ Sequencing &
fragmented demultiplexing
genomes!!
>seql >seql >seql
GCCGTAGTCC... GCCGTAGTCC... GCCGTAGTCC...
>seq?2 >seq2 >seq2
TATGCCGGTA... TATGCCGGTA... TATGCCGGTA...
>seq3 >seq3 >seq3
v
Processing ¢ Pre-processing

Sequence QC
Adaptor trimming
Read filtering
Error correction

National Institute of . ]
m Alsrayand Decontamination
Infectious Diseases




Data pre-processing: QC, trimming &
decontamination

Sequencing

fastq F & R raw
reads

FastQC + MultiQC

Quality Check Nephele
fastq F & R raw
reads
0
aring. e BBDuk / fastp
Oorrectio

| TE F & R reads

a0

BBDuk / BBMap /
KneadData / Bowtie2

Deconta-

mination

fastq F & R TED reads
(Pre-processed reads)

i

Quality of fastq files

i i T

Good quality! - [ Paor quality!
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123456789 11 13 15 17 19 21 23 25 27 29 31 3% 35 37 29 41 43 45 47 49 1234586 5
Fasstion in

Fosition in read (bp)

Adaptor & Quality Trimming & Error correction example:

read (bph

fastp -i Sample1_R1.fastq.gz -| Sample1_R2.fastq.gz \

-o Sample1_R1_te.fastq.gz -O Sample1_R2_te.fastq.gz \
-h fastplog.html -y -c --trim_poly_x-e 10 -w 16 -520 -3 15

Decontamination example:

bbtools bbmap minid=0.95 maxindel=3 bwr=0.16 bw=12 quickmatch fast \
minhits=2 -Xmx100g ref=%{refHostGenomeDB}\
in=Sample1_R1_te.fastq.gz in2=Sample1_R2_te.fastq.gz \
outu=Sample1_R1_ted.fastq.gz outu2=Sample1_R2_ted.fastq.gz \

Use reference
database of
contaminant
organism

outm1=Sample1_R1_contam.fq.gz outm2=Sample1_R2_contam.fq.gz



https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://nephele.niaid.nih.gov/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://huttenhower.sph.harvard.edu/kneaddata/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://github.com/OpenGene/fastp

Error correction & decontamination

Error correction:

» some sequences carry sequencing errors or other sequence-
altering artifacts.

» Cause complications during processing (assemblies, mapping, ITSA
alignments, binning of reads) SALO NGSE YTOB
» Correction algorithms explore the k-mers from the sequences ITSA
along with their coverage in the dataset and remove highly ALON OBAS SALO
underrepresented k-mers
L NGSE
Decontamination: Ng::g
» Shotgun sequences will contain reads from unwanted genomes ASIN GZO
(e.g. host DNA, eukaryotic DNA)
NGWA
U
SING ASIN
SING

National Institute of NGSE
Allergy and
Infectious Diseases

https://www.youtube.com/watch?v=0Y9Q_rUCGDw




/Marker Gene Database\

Marker Gene Ref DB = Marker Genes Comparison o
. - == > 5
analysis | MetaPhlAn, PhyloSitt \_ —<=] J || pnyiogenic profies | &
)
N QL
Ref DB = k-mers e
| Sequence Clustering into taxa §
Composition | CLARK, Kraken2 = 3
©
S
o)
wn
Ref DB = genes .
TED Binni | Sequence Similarity to known genes ‘| Phylogenic & general
F &R reads INNing | Similarity MEGAN, MG-RAST | | functional profiles

Ref DB = genomes
Fragment Mapping to genomes

—> >

recruitment | - HyMANN2, FR-HIT
Community-wide W
phylogenic profiles 8=Jn
Assembly Assembly into contigs & scaffolds R function;I profiles %
metaVelvet, metaSpades, MegaHit + S
Draft genomes, full §

National Institute of ;
m Aloray ans genes & proteins
Infectious Diseases

Sharpton 2014. Frontiers in Plant Science._https://doi.org/10.3389/fpls.2014.00209



https://doi.org/10.3389/fpls.2014.00209

MetaPhlAn 2.0: Metagenomic Phylogenic
Analysis

= Uses bowtie2 to align your short shotgun
sequences (query) to selected marker genes
(longer sequences) specific for each clade,
identified from ~17K reference genomes from all
domains of life. Allows for:

* Accurate species-level resolution into
composition of communities

- Estimation of organismal relative abundance

= No pre-processing of shotgun reads is required
(e.g. error correction, filtering)

s_Neisseria_sicca
s_Neisseria_mucosa
s__Granulicatella_elegans
s__Haemophilus_influenzae
s_ Streptococcus_mitis
s_Rothia_dentocariosa
s__Gemella_haemolysans

s__ Streptococcus_sanguinis
s__Streptococcus_oralis

s_ Veillonella_parvula

s__Prevotella_melaninogenica
s__Rothia_mucilaginosa
s_ Veillonella_atypica

s_ Veillonella_dispar
s_Campylobacter_concisus
s__Actinomyces_odontolyticus
I s_ Oribacterium_sinus
s__Streptococcus_infantis

| | s Streptococcus_salivarius

s__ Streptococcus_parasanguinis
s_ Neisseria_unclassified
s__Neisseria_flavescens
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>metaphlan mergedreads.fasta --bowtie2db ~/PATH/to/METAPHLAN_DB \
--nproc 4 --input_type fasta

> Sample_profile.txt

>merge_metaphlan_tables.py *_profile.txt > merged_abund_table.txt

>hclust2.py --ftop 10 --fdend_width8 --min 0.1 - \

--in merged_abund_table.txt --out merge_a bund_heatmap.png https://qithub.com/biobakery/biobakery/wiki/metaphlan3#create-taxonomic-profiles

Nicola Segata et al. 2012. Nature Methods, 8, 811-814



https://huttenhower.sph.harvard.edu/metaphlan
https://www.nature.com/articles/nmeth.2066
https://www.nature.com/articles/nmeth.2066

Kraken2: taxonomic sequence classifier »e;@?g:v!
]

K-mer: a string of sequence with
chosen length k representing sections

= Fastest tool for highly accurate binning of a longer sequence

= Taxonomic characterization (only ®) o —

= Uses your short query to map even shorter k-mer —r—T— 11—
sequences obtained from known genomes. e —

= Can assign taxonomy to the level of the lowest "
-merto mapping
common ancestor (LCA). ‘mwmpmwam.se)
= Great for short metagenomic reads (e.g. shotgun A
reads) ’/f\ e
= Uses standard and custom DBs A8 A4y e
= Can be memory demanding depending on DB size Tionomy fee

Classification
tree and path

Sequence classified as belonging to leaf of
classification (highest-weighted RTL) path

Figure 1 The Kraken sequence classification algorithm. To classify a sequence, each k-mer in the sequence is mapped to the lowest
common ancestor (LCA) of the genomes that contain that k-mer in a database. The taxa associated with the sequence’s k-mers, as well as the
taxa’s ancestors, form a pruned subtree of the general taxonomy tree, which is used for classification. In the classification tree, each node has a
weight equal to the number of k-mers in the sequence associated with the node’s taxon. Each root-to-leaf (RTL) path in the classification tree is
scored by adding all weights in the path, and the maximal RTL path in the classification tree is the classification path (nodes highlighted in
yellow). The leaf of this classification path (the orange, leftmost leaf in the classification tree) is the classification used for the query sequence.

\

National Institute of
Allergy and
Infectious Diseases

Wood and Salzberg Genome Biology 2014, 15:R46 http://genomebiology.com/2014/15/3/R46


https://github.com/DerrickWood/kraken2/wiki/Manual

MEGANG6-CE

= Uses BLAST or DIAMOND to align shotgun reads to
NCBI NR or NT database of proteins

bbtools bbmerge.sh threads=4\

= Allows for trimq=15 qgtrim=rl minlength=40\
« Taxonomic & functional classification of reads to [l S REETE-LY
the level of the Lowest Common Ancestor (LCA). in2=Sample1_R2.fastq.gz \
. . out=Sample1_merged.fasta
* Use of Graphical User Interface (GUI) to manipulate,
visualize and analyze shotgun data diamond blastx —-threads 4 \

- Community characterization & visualization (e.g. -d $SDMND_ncbiNR_db 1
-q Sample1_merged.fasta \

-o Sample1.daa -f 100

alpha & beta diversity, profile plots, networks)
« Laptop analysis of large metagenomic datasets
* Analysis of both short and long reads!

Huson et al. (2016). PLoS Comput Biol 12(6): €1004957. doi:10.1371/journal. pcbi.1004957


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/megan6/

MEGANG-CE -

Integrates many additional databases (InterPro & GO, eggNOG, KEGG, and SEED)

Incorporation of metadata for community analysis

) Formtona Aoy (RECL) - OAA- Time | B rma® - )] - WHCAN frarians 4 Chwtal, ot 3§ One SO0

SBA B tIwnwT cpe LOR OSEE NIRS X

Both community & functional profiling : v G ey A

Gene_ce ntric d'a‘ LTS TETIT T Oa-b::;;;aqmr-,um-mp megan® - (2] - MEGAN (version 2alph l SITIATE CTOLE (TCA cr-m-.]

Bitouse gut 28789 west]

vV v v Vv

Wstouse_gut J8791_westd

assembl S S
DMouse_gut 28799 carbrl Proteobacteria -
Wruman-gue - . ﬁ}) r
Qiesn!_blastout . Tty ot bavndons
e S St |

. A [ Pty sl shmguton i st 3 — — — -
’ .Ljser frllendll y’ hne!oldul”[hhloblqrcupEE]:E‘ \ Lm}‘ ___: !
interactive interface — e, A X -

» Freely available ﬁ‘ﬂi
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Chlamydiae /Verfucomicro it
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Huson et al. (2016). PLoS Comput Biol 12(6): e1004957. doi:10.1371/journal. pcbi.1004957


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/megan6/

MG-RAST: Metagenomics Analysis Server
Rapid Annotations Subsystem Technology

Entire pipeline of analysis

Web-based

* No software installation required

« No command line use requirements ))) T p— | |

- Upload of data required Z7 e e 06 GG, ee) Aouncarce ofe
Annotation and analysis of metagenomic sequence i Cplnd payprenc \ =
data (both amplicon & shotgun) i & Lf:j s s =

« Assessment of sequence quality £

« Sequence annotation with multiple databases (e.g. ., A [ ACCA-AUG-AUA-GCC-GAU-UGA-GEAC.|

KEGG, GO, NCBI, SEED, UniPort, eggNOG) Qualty contol ormalaton  FeAeFredeien (reggencscan
« Post-annotation analyses & visualization pipelines
Repository for >150K datasets (>23K are publicly Artict removal opion

available)
National Institute of
Allergy and Aziz et al. 2008. BMC Genomics 9, 75 (2008). https://doi.org/10.1186/1471-2164-9-75
Infectious Diseases Cold Spring Harb Protoc. 2010 Jan;2010(1):pdb.prot5368. doi: 10.1101/pdb.prot5368.

https://help.mg-rast.org/user_manual.html


https://www.mg-rast.org/

Gene calling on short reads (unassembled)

= Accurate, fast & computationally lenient strategy to predict ORFs in short
reads.

= Alot of genes will only partially present & can missed!
= Traditional gene callers will not work well on short read metagenomic data

= Specialized software use heuristic models of known genes (characteristic-
based method), to assign short reads to a functional category.

Table 1 Running times per gigabase of sequence data on a single 2 GHz processor

Tool Method Symbol Ref. Time/Gbase
FragGeneScan Hidden Markov Model FGS3,FGS5 [11] 6 hours
MetaGeneAnnotator Codon usage + start site heuristics MGA [9] 15 min
MetaGeneMark Codon usage + gc-content heuristics MGM (8] 20 min
Orphelia Neural network OPH (o] 13 hours
Prodigal Codon usage +dynamic programming PRD [12] 30 min

Compared with downstream analyses, ab initio gene calling is computationally inexpensive.

National Institute of
Allergy and
Infectious Diseases

Trimble et al. BMC Bioinformatics 13, 183 (2012). https://doi.org/10.1186/1471-2105-13-183




HUMANN 2: HMP Unified Metabolic v
Analysis Network

= Entire pipeline of analysis

= Although called “human” the tool is appropriate for microbiomes of any source, not just
human or host-associated microbiomes.

= Uses short SG reads to identify known microbial species (MetaPhlan2), then:
= Maps all reads to genes sourced from those recognized reference genomes

= QOrganizes recognized functional genes into pathways based on MetaCyc DB (DIAMOND)
= Determines presence & abundance of each pathway

a HUMANNZ input: First search tier: Second search tier: Third search tier: Compute gene family
meta'omic sequences ID known species Map reads to |ID'ed Translated search and pathway abundances
(DNA or RNA reads) using marker genes species’ pangenomes unclassified reads (community + stratified)
Species 1 Species 2 o igs —l = i

I Feature RPK
) - Y Y *. GeneX

o ..___ D B B C— + GeneX | Speciest

I
I
/
=
oo

- -z == i , 2

o — Species 1 and 2 marker BE n —— GeneX | Species2 3

: -— o genes recruit reads rotein Sufal 7 i, GeneX | Unclassified 3
Unclassified ~ Novel Species 2 pangenome sequence

National Institute of
NIH Allergy and
Infectious Diseases

Franzosa 2018. https://doi.org/10.1038/s41592-018-0176-y
https://huttenhower.sph.harvard.edu/humann



https://github.com/biobakery/biobakery/wiki/humann2

Comparison to ﬁnarker Gene Databaﬂ

Marker Gene Marker Gene DB Comparison R %))
. - = > >
analysis [ MetaPhlAn, PhyloSitt \_ —<=] J || pnyiogenic profies | 3
@
)
Ref = k-mers &
- Sequence Clustering into taxa . 8-
o > »
Composition |  CLARK, Kraken2 of
O
S,
[0}
»

Ref = genes .

Pre-processed, Binnin .| Sequence Similarity to known genes R Phylogenic & general
TED F &R reads 9 Similarity MEGAN, MG-RAST functional profiles
Ref = genomes
N Fragment Mapping to genomes .
recrutment | HyMANN2, FR-HIT
Phylogenic & @
functional profiles | &
A ol Assembly into contigs & scaffolds + %
ssembly .
————— MmetaVelvet, metaSpades, Complete genes &  [§E
Contig Pt ) proteins, Draft o
. - Assembly MegaHlt ﬁ 8
m National Institute of e PO genomes ‘ )
Allergy and } % f
Infectious Diseases

Sharpton 2014. Frontiers in Plant Science._https://doi.org/10.3389/fpls.2014.00209



https://doi.org/10.3389/fpls.2014.00209

Assembly Strategies

De novo assembly Reference-based assembly

= Reference-free (very powerful!) » Closed reference -> Reconstructs only

= Assembly of all organisms genomes closely related to those in DB

= Assembly of unknown organisms » Uses comparisons to reference genomes ->
= Miss-assemblies: repetitive or more reliable assemblies

homologous regions produce chimeras,

: : . . » Strain-focused
or inaccuracies (large insertions /

deletions / inversions) in the assembled » Miss-assemblies: due to genetic differences
genomes between reference and sampled genomes
= Example tools: metaVelvet, MegaHiit, » Examples: Maqg, Bowtie, AMOScmp, MIRA

meta-IDBA, metaSpades

= Deepest exploration of your community
Hybrid assemblies

» Incorporate both reference-based & de novo techniques

National Institute of

mmlergy and » Assemblies incorporate short and long read data (e.g. PacBio)

Infectious Diseases




De novo assembly process: De Bruijn graphs

Uses k-mers to make assembly “possibility” graphs

» Detect and count k-mers out the dataset and tries to
build an assembly based on the overlapping of these

A Read Layout B Overlap Graph
short sequences

R,: GACCTACA
R,:  ACCTACAA

Best and most commonly used for metagenomics 2 s

A: TACAAGTT

Best assemblers: metaVelvet, metaSpades, MegaHit c: cancrrac
X: TACAAGTC
Y: ACBAGTCC
. Z CAAGTCCG
Reads de Bruijn Graph Potential Genomes
AAGA €co — Tgo GACTCCGACTGGGACTTT
ACTT g L
ACTC CGA GACTGGGACTCCGACTTT
ol CGA e

N ~
Coon  BAS ~EGA  GAC — AcT, @ ~ @D
CGAC
GeA et

x_ > Figure 2. Differences between an overlap graph and a de Bruijn graph for assembly. Based on the set

CTGG of 10 8-bp reads (A4), we can build an overlap graph (B) in which each read is a node, and overlaps >5 bp

CTTT .4—— . are indicated by directed edges. Transitive overlaps, which are implied by other longer overlaps, are
shown as dotted edges. In a de Bruin graph (C), a node is created for every k-mer in all the reads; here
the k-mer size is 3. Edges are drawn between every pair of successive k-mers in a read, where the k-mers
overlap by k — 1 bases. In both approaches, repeat sequences create a fork in the graph. Note here we
have only considered the forward orientation of each sequence to simplify the figure.

National Institute of
Allergy and
Infectious Diseases https://www.youtube.com/watch?v=0Y9Q rUCGDw

Schatz M C et al. Genome Res. 2010;20:1165-1173
http://sysbio.unl.edu/Teaching/BIOS497897_2014/NGS_Lecture_5_WGA_Assembly_1.pdf



https://www.youtube.com/watch?v=OY9Q_rUCGDw

Contigs, Scaffolds, Scaffolding

Contig
= A contiguous sequence representing the consensus
of overlapping sequences (or k-mers), put together
during the assembly process T T ontissfromanemoy
= Often due to missing sequence data, contigs cannot
be further extended or connected contiguously. ‘ Align rea<|1s from short
insert or long insert
SCﬂffO'dS - library °
= Due to the paired end-nature of the reads within each _ _ _ ——=re e
contigs, some contigs can be grouped into subsets -————————— 2z =———a——
with known order, orientation and nt distance -— T
(scaffolds). ‘ :)c:;ec;r;:gsdl;i:\g evidence from
Scaffolding:

= The process of determining contig grouping, order,
distance and orientation, by exploiting the PE-nature
of the incorporated reads.

« Metagenomics assembly tools that automatically
do scaffolding: metaSPAdes, metaVelvet

National Institute of
NIH Allergy and
Infectious Diseases

Scaffold




Assemble a sentence from tetra-mers

Uncle Iroh’s song (1 genome) is broken up onto k-mers of 4 letters
(tetra-mers). Since uncle Iroh performed his song 3 times in the past
(3x coverage of the 1 genome), we have k-mers from 3

representations of the lyric.

ITSA Can you put together the lyric and discover what Iroh sang?
SALO
ALON
NGSE OBAS NGLO Help Uncle Iroh recall his favorite song!
BASI YTOB
NGWA
SING

K-mer: a string of sequence with chosen length
k representing sections of the full sequence

National Institute of
Allergy and
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Assembly pipeline

L fastp

BBmap

BBTools::

metaVelvet,
metaSpades,
MegaHit

BWA,
bowtie2,
BBMap

Infectious Diseases

Raw Reads

QC stats

Trim, Filter,
Error correct

TE
F & R reads

TED
F & R reads

Assembly

Assembled
Scaffolds

Mapping

Assembly QC



https://github.com/OpenGene/fastp
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/

Assembly QC statistics

For single organism (genomics):

= Total assembly size (length)

= Number of contigs :

= Length of largest contig NS0 size

= Number of large contigs (e.g. > 50kb)
= Percent reads mapping back to the assembly

Def: 50% of the genome is in contigs as large as the N50 value

. .
NS0 size _ _ Example:| Mbp genome 50
« Used to describe the quality of an assembly 0
«  The length of the shortest contig within the set of largest contigs, it
comprising at least 50% of the assembly -
= LS50

The numoer o ontig malangup 50% of e asserbly \ o o ol R

- - o NS0 size = 30 kbp
For multiple organisms (metagenomics): (300K 00k +45k+45k+30k = 520k >= 500kbp)
= Total assembly size

= Percent reads mapping back to the assembly
= Number of predicted / annotated genes N50 values are only comparable between genomes of

National Institute of
NIH Allergy and
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same sizes /assemblies of same size!

Rodriguez & Konstantinidies, 2014. ISME. https://doi.org/10.1038/isme|.2014.76
Kunin et a. 2008. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Dec. 2008, doi:10.1128/MMBR.00009-08



https://doi.org/10.1038/ismej.2014.76

Metagenomic assembly coverage

Coverage: Typical contig coverage

= Hard to predict the sequencing depth t e CZooveage
(coverage) needed to fully cover all the ol S k L = length of reads
genomes in a metagenome sample, during Al ¢ 7 s ot genome
sequencing & sufficiently represent all 1 | |
organisms | | t |

= Depends community complexity & organismal
content

= Post sequencing: Determined by mapping the ~ ®e
original processed reads (error-corrected
back to the assembly. 100-

= Sufficient coverage to close a draft genome
from a metagenomic dataset is not commonly
achieved (complex organismal community).

B Posterior fornix [SRS023466]
O Anterior nares [SRS147950]
@ Stool [SRS015540]

Estimated average coverage (%)

40 B Tongue dorsum [SRS055495]
3 B Lake Lanier [SRR948155]
B Baltic Sea (21m) [SRS291372]
20 B Tibet soil [SRR1023760]
. " 3 = B Peru tropical forest (Manu Park
National Institute of Rodriguez & Konstantinidies, 2014. ISME. d | )
NIH Allergy and https://doi.org/10.1038/ismej.2014.76 0 B S S 1 B S B L B U AR
Infectious Diseases Kunin et a. 2008. MICROBIOLOGY AND MOLECULAR 1 Mb 10 Mb 100 Mb 1Gb 10Gb 100 Gb 1Tb

BioLoGyY Reviews, Dec. 2008, Sequencing effort
doi:10.1128/MMBR.00009-08



https://doi.org/10.1038/ismej.2014.76

Draft genomes of assembled sequences
(binning)

An unsupervised method (without the assistance of a database) of clustering scaffolds into taxonomic
groups, based on sequence features (GC content, read coverage, etc.) and contig linkage patterns

Advantages:
* Improving taxonomic and genomic assignment
- Discover novel taxa (without cultivation) £ £ 3
 Elucidate functional potential of taxa &%’ﬁ&%ﬁﬁ 3 ;’%%&“ﬁ:; A
* Lower risk of false positives ¥y gﬁ:nﬁgx;& “Tt:*:mm
Disadvantages: “:f?;‘f*'ti’;*’ . eﬁ%ﬁif;’* .

* Higher abundance limit for detection Sk s
* |naccuracies with complex communities
= Binning tools: MetaBat, MaxBin, CONCOCT, GroopM

m Mergyand _

Allergy and
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CheckM: Parks. 2015. Genome Res. 2015. 25: doi:10.1101/gr.186072.114



Assessing draft genome quality

Uses a database with a broad set CheckM >checkm lineage_wf --pplacer_threads 8 -t 8 --nt -x fasta \

bins/ --tab_table checkm_wf/
-0 2 -tab_table -f sum_meta.txt \

of marker genes with information
about their relative pOSitiOn, >CheCkrrc]I?:ckm wf/lineage.ms checkm_wf/ -t 4
co-location and distribution >checkmtree_qa -0 2 -tab_table - \
throughout their reference checkm_wf/tree_qa_results.txt checkm_wf/

genomes, in order to assess

characteristics of the draft all reference /],  Quality control infer lineage-specific marker genes
genomes (blns) E_U['}“““L'*- gcn:’mcs (precomputed information)
with gene
annotations : trusted ‘i:r‘n{'lTl'lL‘.\i —h - - " reference
infer suitable marker
1cti r lataset
CharaCtel’ISthS Of the draft genOmeS infer genome tree genes for each lineage s
(blnS) —— 1L through simulation data file
- completeness [
genome tree decorated with process
° contamination Ievels lineage -specific marker genes
- phylogenic association I = .t_l ==
. . putative infer position in | ILL,“-]. j L) - .|.1m : q‘llu ]"" L an lf;.\ I, :
= Allows for manual bin exp|orat|on ey T e o putative using lineage - quality
. . > = genomes specific marker estimates
= Allows for manual bin curation e Cakeainte _ . ,
genome size, infer genome quality

National Institute of assembly r GC. N50 line aceing
Allergy and statistics g Tt b (online processing)
Infectious Diseases

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/
https://ecogenomics.qgithub.io/CheckM/



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/
https://ecogenomics.github.io/CheckM/

Challenges in metagenome assembly

= Computationally demanding

= Chimeric assemblies: unrelated
genomes may contain similar DNA

= Genomes from same species may
harbor genetic differences

= Specialized metagenome assembly
algorithms needed (single genome
assembly algorithms won't do).

National Institute of
NIH Allergy and
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Gene & functional annotation

= Gene predictions algorithms find genes based on different strategies:

 structural features (e.g. GC content, k-mer content, transcription start/end sites, base occurrence
periodicity, etc.)

 co-location of genes (probabilistic distances for co-location of genes within a (draft) genome /
scaffold / long read)

* masking of non-coding regions (e.g. repeats, junk DNA, TES)
« Tools: Prodigal, GeneFragScan, metaEuk, metaErg
= Gene annotation algorithms assign biological relevance to the predicted genes

- Based on homology to reference gene databases of hidden Markov models (HMMs)
constructed from empirically explored genes

« Assigned are gene annotations (gene names, EC numbers, Gene Ontologies, etc.)
« Tools: metaProkka, InterProScan, GhostKoala, DAVID, EuGene, MG-RAST, Galaxy

= Functional annotation algorithms perform and/or use gene annotations to reconstruct metabolic
pathways and predict functional capacity of organism/ communities

« Tools: MinPath, KEGG Mapper, MG-RAST, Galaxy

O InterPro

L o A7
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=g i Ay [
= L’ =
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Classification of protein families

PROJECT

https://tinyurl.com/y4orq76q



Metagenomics
strategies

Amplicon

Amplicon Sequencing

T‘ Shotgun

" 4

Shotgun Sequencing

Community content & diversity Yes Yes
Community dynamics Yes Yes
Taxonomic response to factors Yes Mostly
Diversity detalil Bacterial / Targeted Abundant/Larger Genomes
Taxonomic Assignment Genus level Strain level
Taxonomic Resolution Rare species Abundant-med abund organisms
Core community Yes Yes
Taxonomic targeting Yes (in situ) In silico
Functional capacity Only inferred / Limited Yes
Introduced biases PCR & Primers bias Genome size and complexity
Microbial “dark matter” Less detectable Detectable

Variant detection

Only for amplicon

For any gene / region

Computational demand

Less

Rather large

Cost

Cheaper

More expensive

National Institute of
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Metadata is just as important as the data itself!

2% genom:c
STANDARDS

= Metadata is critical to data interpretation & reproduc:b/l/ty consortium

http:// .
= Metadata Standards are being implemented by scientific community! Hp:/rgensc.org
« to promote standardization of sequence data and metadata quality (e.g. ontology, descriptive fields)
» to promote data discoverability, comparability and reproducibility of studies.

Checklists for Minimum Information about any sequence (MIxS) implement specific
requirements for different types of information needed to describe each study and sample

(e.g. biome, longitudinal study)

* For (meta)genomic studies: Minimal Information about a (Meta)Genomic
Sequence (MIGS & MIMS) checklists

* For marker gene studies (e.g. 16S): Minimal Information about a Marker
Sequence (MIMARKS) checklists

These and other standardization checklists available at: https://gensc.org/mixs/

National Institute of
Allergy and
Infectious Diseases

Mixs



https://gensc.org/mixs/

Thank you Questions

bioinformatics@niaid.nih.gov

National Institute of ACKnOWIedgements
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niectious biseases Office of Cyber Infrastructure and Computational Biology
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