
National Institute of Allergy and Infectious Diseases

METAGENOMICS OVERVIEW

Metataxonomics

MSB7105

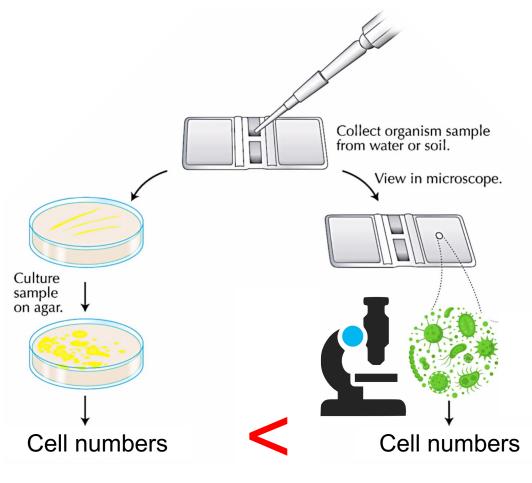
March, 2021

National Institute of Allergy and Infectious Diseases

Angelina Angelova, PhD

Bioinformatics and Computational Biosciences Branch (BCBB) OCICB/OSMO/OD/NIAID/NIH

Today's instructor


Angelina Angelova, PhD Metagenomics Analysis Specialist

Bioinformatics and Computational Biosciences Branch (BCBB) National Institute of Allergies and Infectious Diseases (NIAID) National Institute of Health (NIH) Bethesda, MD, USA

> Contact instructor: <u>angelina.angelova@nih.gov</u> Contact our team: <u>bioinformatics@niaid.nih.gov</u>

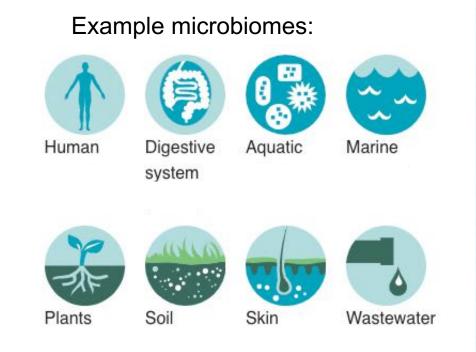
The great plate count anomaly

A term coined by Staley & Konopka in 1985 to describe the difference (in orders of magnitude) between the number of cells from natural environments countable by microscopy and those observed after culturing on common agar media.

"Simple" genomics is not enough

- The microbial world is extremely diverse (construct ~1/2 of Earth's biomass) and largely unknown
- Less than 1% of organisms are culturable due not only to lack of proper growth conditions for them in the lab, but also due to proper social interaction
- Microbes exist in complex communities & have complex relations between each other and larger organisms!

Staley, J. T., and A. Konopka. 1985. Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321-346. [PubMed] [Google Scholar]


National Institute of

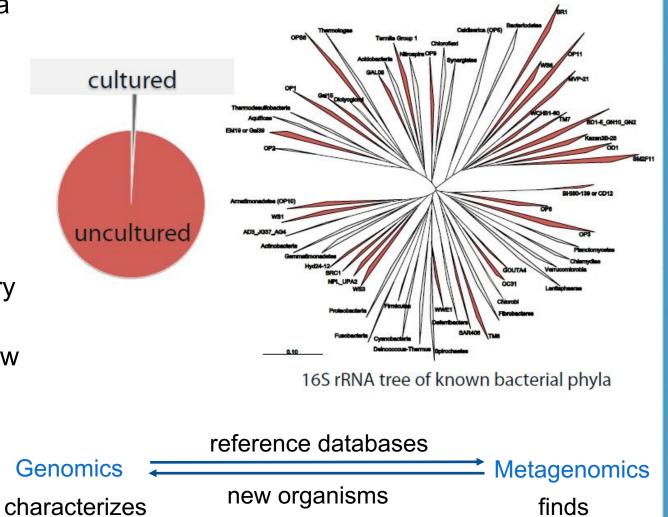
nfectious Diseases

llergy and

Define "Metagenomics"

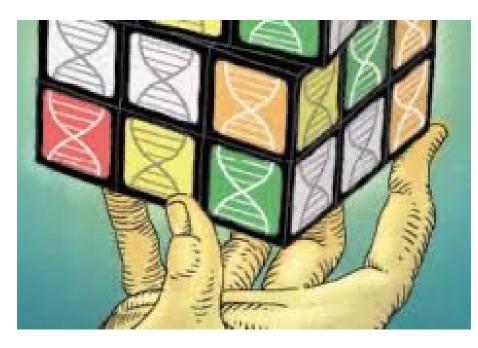
- NGS made the field of metagenomics possible
- Metagenomics: Refers to the idea that the collection of genes (the metagenome), obtained directly from a community in its natural habitat (the microbiome), can provide an understanding of the function and characteristics of the whole community, in a similar way as the collection of genes from a single organism can provide an understanding of the function and identity of that organism.
- Metagenomics bypasses the need for isolation or cultivation of individual microbes.
- Allows for exploration of the structure (abundance & identities), interactions, strategies (communication, survival, etc.), functionality and dynamics of a community

'Shining a light' on microbial 'dark matter'


- Culture-based techniques are very limited to only what is cultivatable and produce a strong bias towards exploration of only cultivatable organisms, excluding > 99% of microorganisms from exploration
- Metagenomics enables scientists to explore this microbial 'dark matter'
- Vast applications:
 - Biotechnology & Medicine

lational Institute of

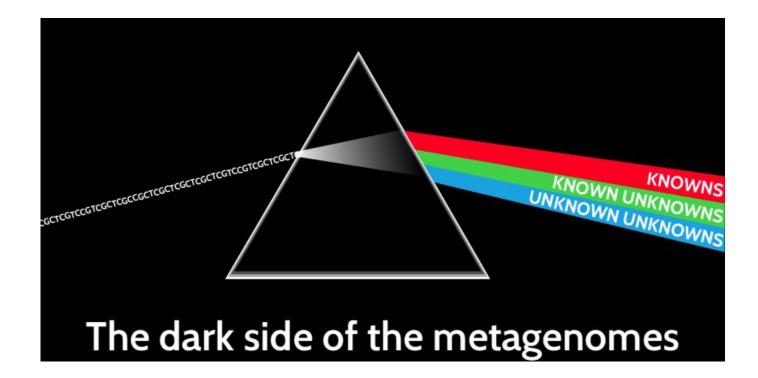
lergy and


- Environmental preservation & recovery
- The more organisms can recognize, the more we expand our capacity to 'see' new species.

Our skewed view of the microbial world

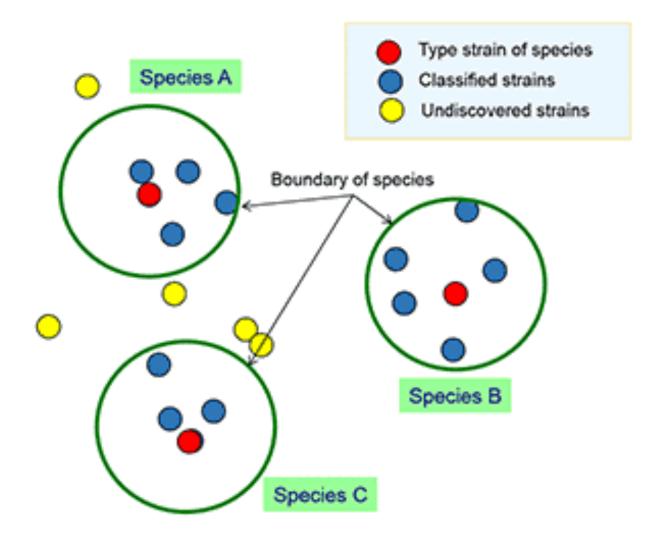
Reference genomic databases

A reference genomic databases are a collection of DNA sequences that are idealistic genomic representations of recognized organisms. These sequences are sourced either from individual cultivated organisms (a type strain representing that lineage) or in case of more complex organisms – from multiple organisms from the same species (e.g. human).


lational Institute of

RefDBs allow for the characterization of

- a specific species through identification of conserved genes within that organism's genome (genetic markers).
- a specific function through identification of known genes/proteins observed within the organism
- RefDB are important for
 - Propper phylogenic & functional assignments of unknown sequences
 - Understanding genomic structures, functional capacity & survival strategies of organisms
 - Guiding assembly software & genome mining tools


Can you think of any genetic markers commonly used in microbial identification?

Genetic markers are used for identification of organisms or function. These are ideally a single-copy genes with universal presence but internal variability in all organisms

Can you recall a name of a reference sequence database?

National Institute of Allergy and Infectious Diseases

Shotgun

Amplicon

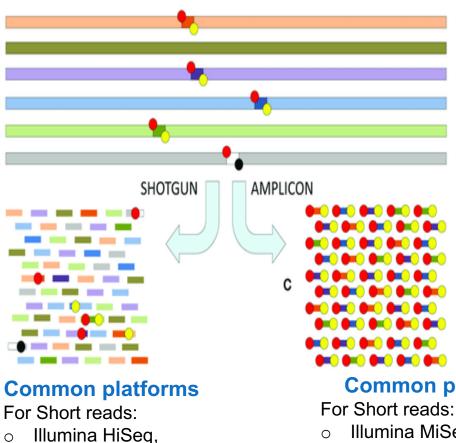
Shotgun Strategy

ALL the DNA from ALL the genomes within the ENTIRE community, is fragmented to the "bite-size" capacity of a sequencing platform. ALL DNA is sequenced. The sequences are used to explore taxonomic composition and functional capacity of the entire community

Long-read Strategy

ALL the DNA from ALL the genomes within the ENTIRE community, is sequenced in "large bites". The sequences are used to explore taxonomic composition and functional capacity of the entire community **Common platforms**

For long reads:


PacBio, Nanopore (Minlon)

National Institute of llergy and nfectious Diseases

0

NextSeq, NovoSeq

Amplicon Strategy

<u>One gene</u> (a marker gene or a fraction of it) from ALL the genes from within ALL the genomes of ALL the organisms in a community, is targeted for amplification. Its sequence is used to explore the taxonomic composition of the entire community.

Common marker genes:

- For Bacterial & Archaeal organisms:
 - 16S rRNA gene 0
- For Eukaryotic organisms:
 - 18S rRNA gene (less conserved) 0
 - ITS: internal transcribed spacer Ο region

Common platforms

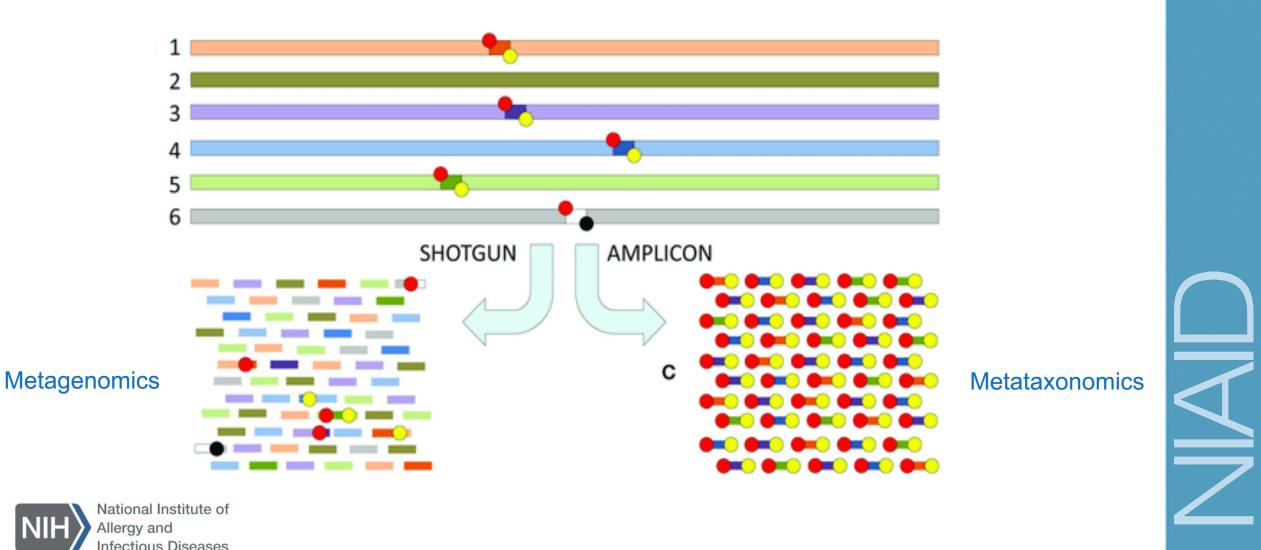
- Illumina MiSeq, NextSeq
- TermoFisher IonTorrent \cap

PNAS April 17, 2012 109 (16) 6241-6246; https://doi.org/10.1073/pnas.1117018109

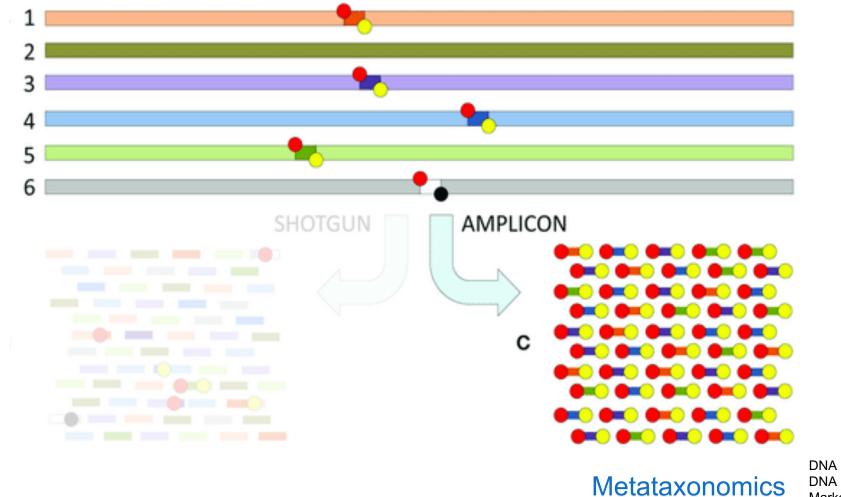
Nature Biotechnology. Sept. 2017. https://doi.org/10.1038/nbt.3935

JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 2007, 45 (9), https://jcm.asm.org/content/45/9/2761.short

Why is long-read sequencing not commonly used?


- Because DNA gets commonly shredded during extraction, anyway.
- Because long-read platforms have a lower resolution for the rarer organisms or organisms with smaller genomes, so such will often be unrepresented
- Because bacterial genomes are often not "that big" and long-read strategy is often overkill.
- Because long-read strategy still creates sequence errors which inflates the diversity of a community

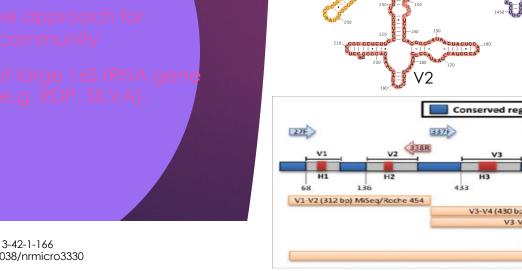
Long-read sequencing can still be used & be quite useful depending on what one is looking to explore (e.g. micro-eukaryotic communities!)

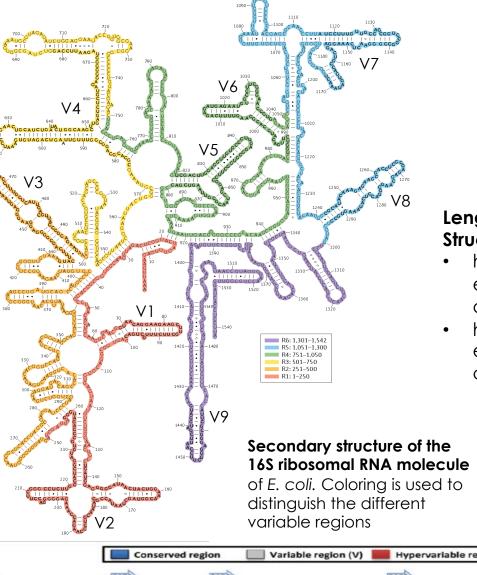


Microbiome exploration strategies

Amplicon-based community exploration

DNA indexing DNA barcoding Marker gene sequencing Amplicon sequencing

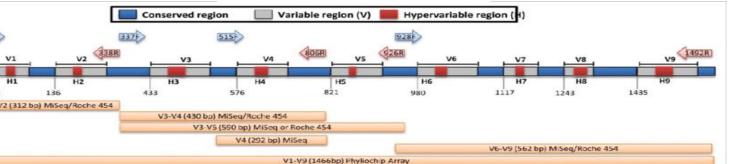

Down rabbit hole #1

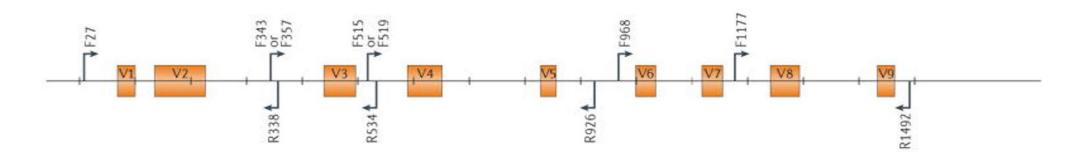

16S rRNA gene characteristics

Ubiquitous gene, found in all prokaryotes

Ma sequenced gene!

rimers are well





Length: ~1,600bp Structure: contains

- highly conserved regions: enabling gene targeting across species; and
- highly variable regions: enabling taxonomic characterization

Common universal 16S rRNA Primers

- F27: AGAGTTTGATCCTGGCTCAG
- F343: CCTACGGGNGGCWGCAG
- F515: GTGYCAGCMGCCGCGGTAA
- ➢ F968: ACGCGHNRAACCTTACC
- F1177: ACGTCATCCCCACCTTCC

- R1492: CGGNTACCTTGTTACGACTT
- > R926: CCGYCAATTCMTTTRAGTTT
- R785: GACTACHVGGGTATCTAATCC
- R534: GTWTTACCGCGGCTGCTGG
- R338: GCTGCCTCCCGTAGGAGT

Kuczynski et al. 2012. Nat Rev Genet 13. doi: https://doi.org/10.1038/nrg3129

Common universal ITS & 18S primers

Common 18S rRNA gene primers >F563: TGC CAG CAG CCG CGG TAA TTC C >R1150: CCG TCA ATT CCT TTA AGT TT >F1267: GGT GGT GCA TGG CCG TTC TTA G >R1644: GAC GGG CGG TGT GTA CAA AGG

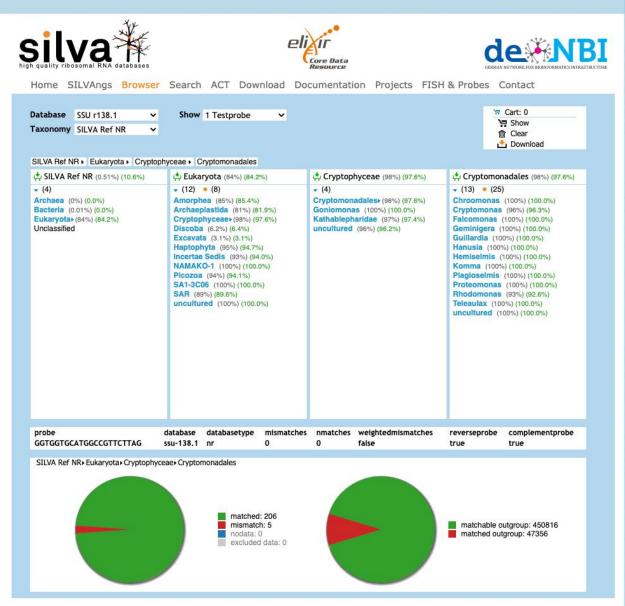
Hadziavdic et al. 2014. https://doi.org/10.1371/journal.pone.0087624

Fungal equivalent of 16S rRNA marker gene is the **ITS region** (Internal transcribed spacer region) Unlike 16S or 18S rRNA amplicons, the ITS regions can drastically vary in length and sequence between species, complicating sequence processing

Common ITS primers

Primer Author		Primer sequence	Position		
Forward	primers				
NS7	[19]	GAGGCAATAACAGGTCTGTGATGC	1403-1426		
ITS1-F	[18]	CTTGGTCATTTAGAGGAAGTAA	1723-1744		
ITS5	[19]	GGAAGTAAAAGTCGTAACAAGG	1737-1758		
ITS1	[19]	TCCGTAGGTGAACCTGCGG	1761-1779		
ITS3 [19]		GCATCGATGAAGAACGCAGC	2024-2045		
Reverse	primers				
ITS2	[19]	GCTGCGTTCTTCATCGATGC	2024-2043		
ITS4	[19]	TCCTCCGCTTATTGATATGC	2390-2409		
ITS4-B	[18]	CAGGAGACTTGTACACGGTCCAG	2526-2548		
LR3	[13]	CCGTGTTTCAAGACGGG	3029-3045		

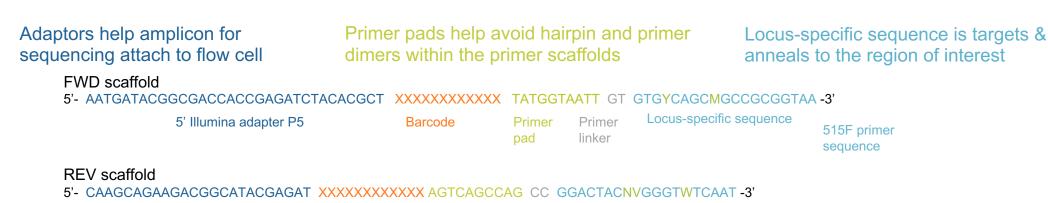
Figure 1 Commonly used primers for amplifying parts or the entirety of the ITS region. a) Relative position of the primers, design of the subsets and number of sequences in each subset. b) Primer sequences, references and position of the primer sequence according to a reference sequence of *Serpula himantioides* (AM946630) stretching the entire nrDNA repeat.


Belleman et al. 2010. BMC Bicrobi. doi: <u>https://doi.org/10.1186/1471-2180-10-189</u> Usyk et al. 2017. doi: 10.1128/mSphere.00488-17

Selecting your primers (TestProbe 3.0)

Mystery primers

- Df514 TCC AGC TCC AAT AGC GTA
- > Dr1069 TCT TTA AGT TTC AGC CTT GC

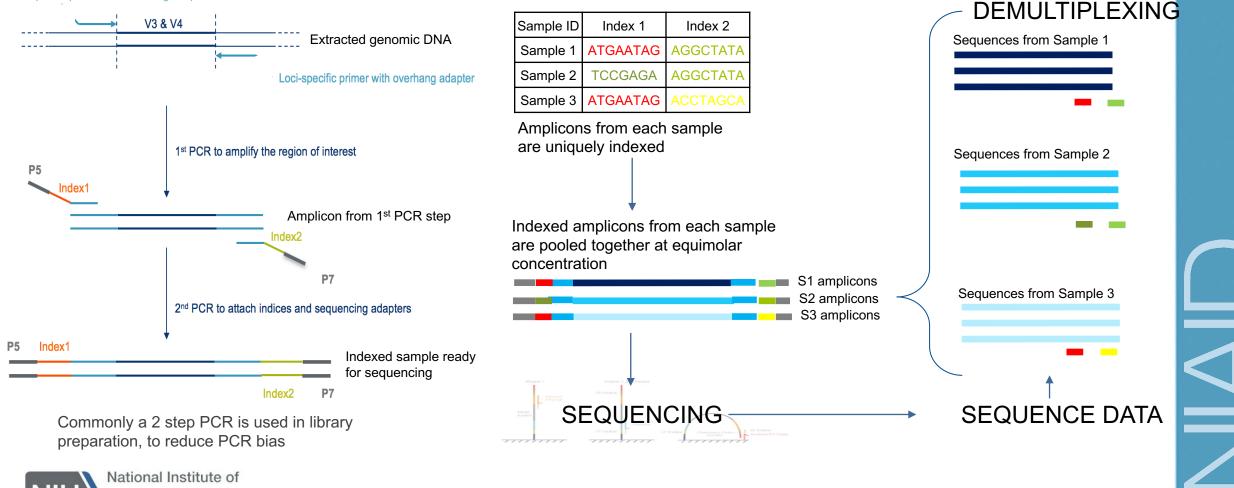

Primers you select will drastically affect the resolution and visibility of different phylogenies. You can test ANY primer at <u>https://www.arb-silva.de/search/testprobe/</u> to determine *in silico* a primer's ability to "recognize" specific lineages of organisms, prior to sequencing

PCR primer scaffolds for high-throughput sequencing of 16S rRNA gene

Primers scaffold:

3' Illumina adapter P7BarcodePrimerPrimerLocus-specific sequence806R primerpadlinkersequence

Barcodes are attached to the primers (indexing) to differentiate amplicons from each sample. Afterwards libraries can be been pooled together for sequencing. Distinguishing the produced reads based on the inserted barcodes after sequencing, is called demultiplexing Primer linkers help introduce a kink / bend in the molecular shape of the primer & provide spacing between the locus-specific primer & the rest of the scaffold



Library preparation for high-throughput sequencing of 16S rRNA gene

Loci-specific primer with overhang adapter

Allergy and

nfectious Diseases

https://www.idtdna.com/pages/education/decoded/article/16s-rrna-indexed-primers-amplify-phylogenic-markers-for-microbiome-sequencing-analysis

Problems with PCR: inherent biases

- Inherent biases:
 - PCR primer bias: bias introduced from the different primer annealing efficiency to different templates /phylogenic groups
 - PCR efficiency bias: bias introduced from the different PCR rates among different templates/ phylogenic groups
- Resulting in inaccurate representation of template distributions
- PCR bias cannot be avoided in amplificationbased studies, but it can (and should!) be:
 - constrained with molecular biology techniques (e.g. 2 step PCR, degenerate bases); or
 - assessed in the downstream analysis, acknowledged and presented in each study!

Acinas et al. 2005. Appl Environ Microbiol 7(12). doi: 10.1128/AEM.71.12.8966-8969.2005

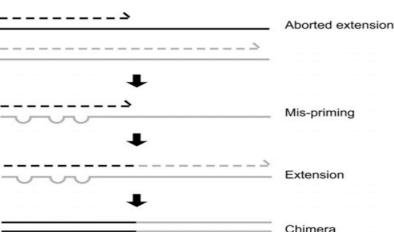
100% g:Bacillus g:Enterococcus 80% **Selative abundance** g:Escherichia g:Lactobacillus 60% g:Listeria 40% ■ g:Pseudomonas ■ g:Staphylococcus 20% g:Salmonella g:Cryptococcus 0% Experimental Expected g:Saccharomyces representation composition

It is pivotal to include microbial community standards to your experimental samples to assess PCR bias

e.g. <u>ATCC microbiome standards</u>, ZymoBiomics Microbial Community standards

ZymoBIOMICS[™] Microbial Community Standards

Problems with PCR: Chimera formation


Chimeras:

- Artifacts of PCR amplification, sequencing or read merging
- Hybrid products between multiple parent sequences
- Inflate apparent community organismal diversity, by suggesting presence of non-existent organisms
- Chimeric formation is more common between more closely related organisms

S. pneumoniae GCGAGTCCATG-CT-T-GA-AGGAGTGGAGTGGAATCTGTTC--G-G-CCGGTCAC-TAG-A-AATGTGTTAATAG-TTTTTAAGGGGTTGAGCCTAGCTGGA--TG-ACCCGGGTCTT S. mutans GCGAATCCATG-CT-T-GA-TCGTGTGGGGGGGGGGATCAGGTC--G-G-CCGGTGAC-CAGGA-GAAGTATCAATGT-TCTCTGGAGGGGTTAAGCTC B FOU0VHD01AVGMUCCATG-CT-T-GA-AGGAGTGAGGTGGAATCTGTTC--GGG-GGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAGAAAGCGAGATTCATTGGTA--CAGGGGGTCCCCTCTA D F00901004Y2KK0 ATCCATG-CT-T-GA-AGGAGTGAGGTGAGGTGGAATCTGTTC--G-G-GGAAACCT-TTT-T-ATGCCACCGG-AGTATGAAAGAAAGCGAGATTCATTGGTA--CAGGGGTCCCCCTCTA D F00901004XN78RCATG-CT-T-GA-TCGTGTGAGGTGGAATCAGGTC--G-G-GGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAGAAGCGAGATTCATTGGTA--CAGGGGTCCCCCTCTA B FOU0VHD01BXCRHCT--G-CTTAGGAAAGGAGTGAGGTGGAATCTGTTC-GG-GGGGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAGAAAGCGAGATTCATTGGTA--CAGGGGTCCCCTCTA C FOTCTRC04LRPE1CA-G-CT-TGGA-TCGTGTGGGGGTGGGAATCAGGTC---G-GGGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAGAAAGCGAGATTCATTGGTA-D F00901004YSY6S GTCCATGCGT-T-GA-AGGAGTGAGGTGGAATCTGTTC--G-G-GGAAACCT-TTT-T-ATGCCACCGGAGGTATG B FOU0VHD02EMPOTCCATG-CT-T-GA-TCGTGTGAGGTGGAATCAGGTC-GG-GGGGAAACCT-T-T-T-ATGCCACCGGA C FOTCTRC04L7YJWG-CT-T-GA A-G-CT-T-GA D F00901002JMJ4PCCATG-CT-T-GA-TCGTGTGAGGTGGAATCAGGTC-D F00901002J0X0K ATCCATG-CT-T-GA-TCGTGTGAGGTGGAATCAGGTC--G-G-GGAAACCT-TTT-T-ATGCCACCGGAGGTAT D F00901004X3HRCATCCATG-CT-T-GA-TCGTGTGAGGTGGAATCAGGTC--G-G-GGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAG D F00901004XNOV6ATCCATG-CC-T-GA-TCGTGTGAGGTGGAATCAGGTC--G-G-GGAAACCT-TTT-T-ATGCCACCGGAGGTATGAAAGAAAGCGAGATTCATTGGTA S. aureus Atcgacgctca-ct-t-at-ggatagtgtagtagtactgtctcat--c-c-ggaaacct-ttt-t-atgccaccggaggtatgaaagaaagcgagattcattggta--caggggtcccctcta

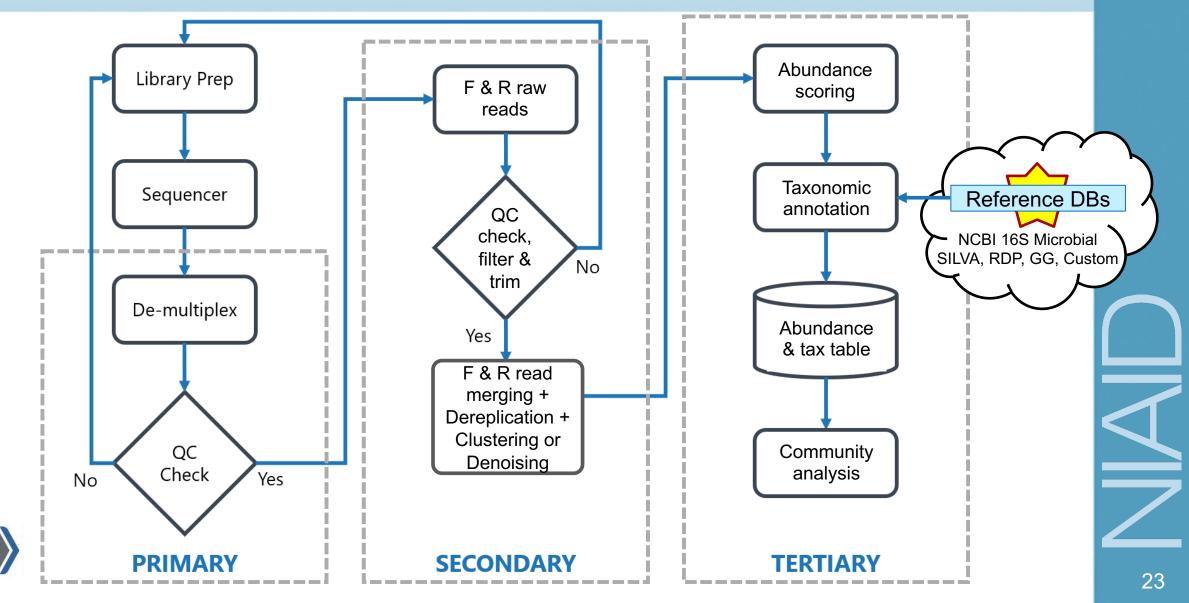
Figure 1. Formation of chimeric sequences during PCR. An aborted extension product from an earlier cycle of PCR can function as a primer in a subsequent PCR cycle. If this aborted extension product anneals to and primes DNA synthesis from an improper template, a chimeric molecule is formed.

Computational tools are used to identify and remove chimeric sequences

PCR

Raw sequences: FastQ file structure

Output files provided from sequencer (normally): Fastq files in archived format Sample1..._**R1**_...fastq.gz (Forward Reads) Sample1..._**R2**_...fastq.gz (Reverse Reads) Sample1..._**R0**_...fastq.gz (Undetermined)

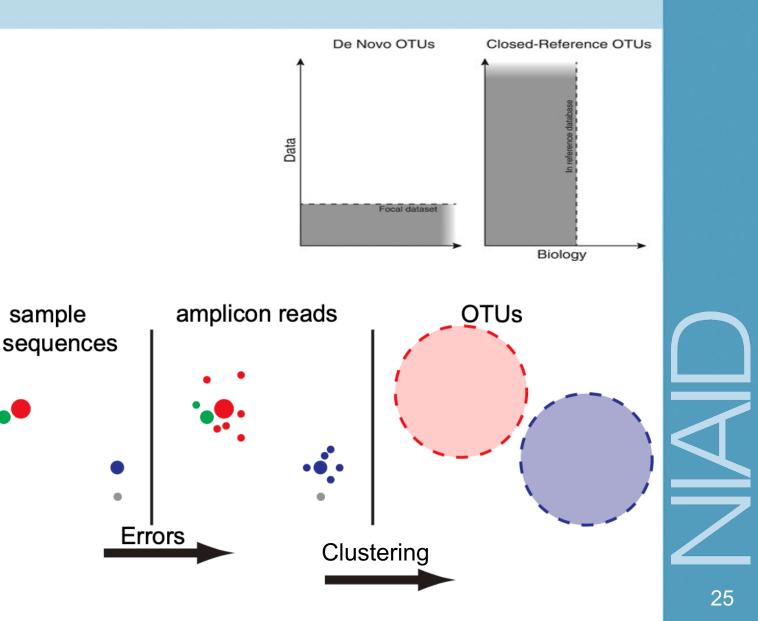

What you will mostly need

A text-based format for both sequence and associated <u>phred</u> <u>quality scores</u>, developed by Sanger Institute

General Bioinformatics workflow (metataxonomics)

Processing strategies

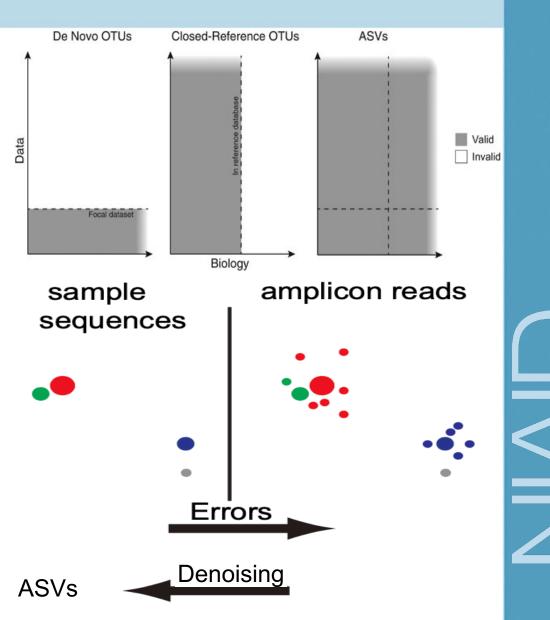
- Cluster-based strategy: OTU formation
 - OTU: Operational taxonomic unit
 - A sequence (usually the longest) representing a cluster of similar sequences
 - recently depreciated for carrying over too many errors
- Denoising strategy: ASV formation
 - ASV: Amplicon Sequence Variants
 - A sequence (error-corrected) representing an amplicon variant
 - common practice / more correct representation



Clustering (OTU formation)

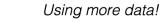
OTUs = Operational Taxonomic Units Cluster representative sequence

- Created by clustering of all sequences, based on a fixed similarity threshold (97% seq similarity). A representative read is chosen (usually the longest one within the cluster) to represent the whole cluster and its abundance is determined by the number of reads in its cluster.
- This is a depreciated method because: Lingering sequencing errors artificially inflate community diversity
- More stringent downstream filtering is required, loosing information about rarer species

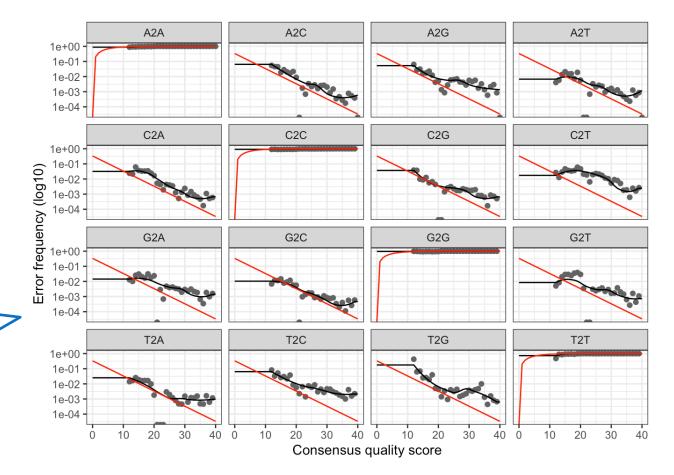

Denoising (ASVs)

ASVs = Amplicon Sequence Variant

- Using nucleotide identity and quality, an error model is created individually for F & R reads, to identify artificial variations. These models are then used to correct the sequence errors, prior to read merging and abundance scoring.
- The amplicon sequence variants (ASVs), provide a more accurate and fine-scale resolution into the *real* diversity of the amplicons, than any clustering algorithm.
- The error model may vary from one sequencing run to another (batch effect)
- Algorithm is reference-free and works on any genetic locus, highly similar sequences (amplicons of the same locus).

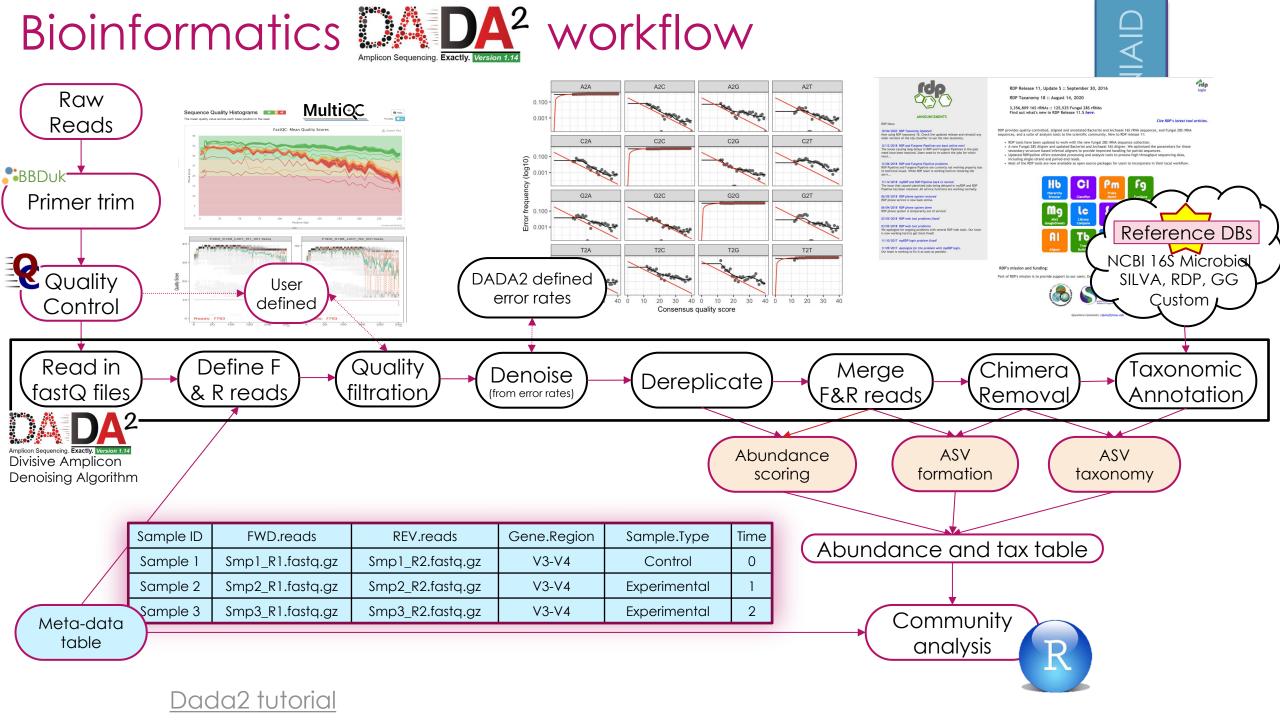

Denoising (ASVs) Clustering (OTUs)

- s: ATTAACGAGATTATAACCAGAGTACGAATA...
- r: ATCAACGAGATTATAACAAGAGTACGAATA...


$$p(r|s) = \prod_{i=1}^{L} p(r(i)|s(i), q_r(i), Z)$$

Error rates depend on....

- Substitution (eg. A->C)
- Quality score (eg. Q=30)
- Batch effect (eq. run)



Denoising error model

In a good model, the observed error rates (black line) will decrease with increase of quality score (the x axis), keeping the trend of the expected error rates (red line)

- Denoising algorithms
 - <u>DADA2</u> (DADA2,R, <u>QIIME2</u>)
 - UNOISE3 (USEARCH, VSEARCH)
 - <u>Deblur</u> (<u>Deblur</u>, <u>QIIME</u>)
- Clustering algorithms
 - UCLUST (<u>QIIME</u>)
 - UPARSE (<u>USEARCH</u>, <u>VSEARCH</u>)
 - Mothur (mothur)

Divisive Amplicon Denoising Algorithm

Databases for taxonomic assignment

16S / Bacterial & Archaeal Databases

<u>SILVA</u>

- 2,225,272 full 16S & 18S rRNA gene sequences + guide tree
- Latest release: v138.1 from August 2020

<u>RDP</u>

- 3,356,809 full 16S rRNA gene sequences + 125,525 fungal 28S rRNA gene sequences
- latest release: v18 from August 2020

NCBI's 16S Microbial

- 20,845 full 16S rRNA gene sequences from type strains
- Latest release: Oct 202 (regularly updated)

GreenGenes

Outdated, latest release 2013

MicrobiomeDB

A Microbiome Resource

Release 20 17 Dec 2020

NCBI National Center for Biotechnology Information

Databases for taxonomic assignment

ITS / Fungal Databases

UNITE Community

- 35,077 ITS gene region sequences
- Latest release: v8.2 from Feb 2020

<u>GlobalFungi</u>

- 145,873,740 ITS sequence variants
- Latest release: v0.9.8 from Jan 2020

FungiDB

- ► 6,632 ITS gene regions
- Latest release: 50 beta from Dec 2020

R-Syst DBs

 A collection of custom databases specific for different phylogenies across kingdoms

National Institute of Allergy and Infectious Diseases

18S protozoan databases

<u>SILVA</u>

- 2,225,272 full 16S & 18S rRNA gene sequences + guide tree
- Latest release: v138.1 from August 2020

PR2 database

- 184,000 18S rRNA gene region sequences
- Latest release: v14.12.0, from August 2019
- manually curated & metadata available

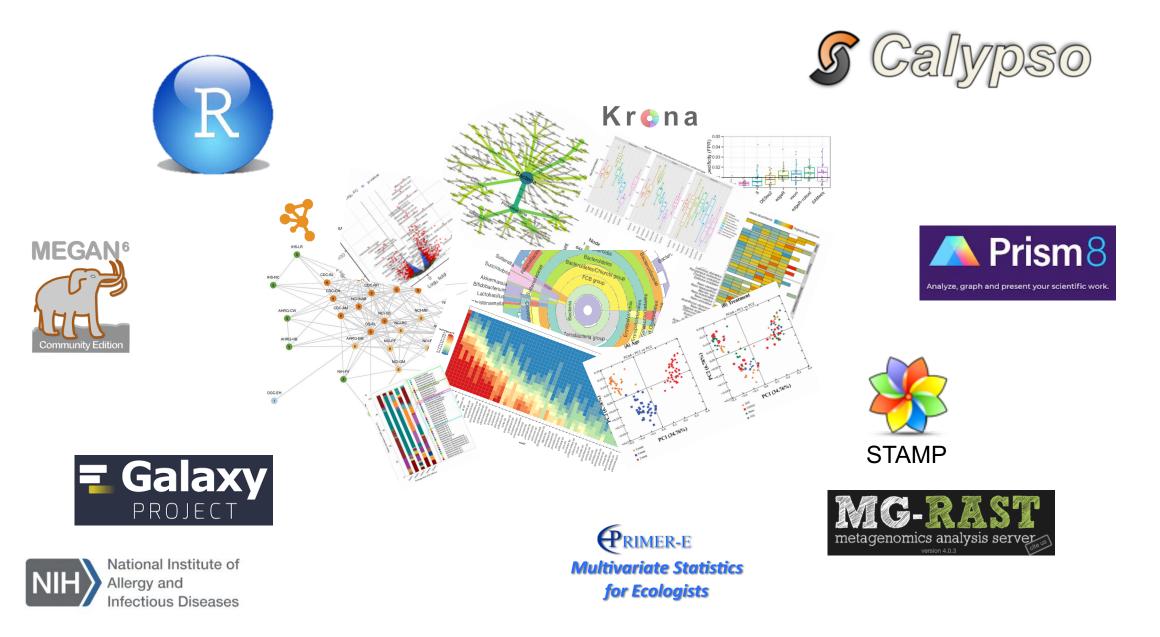
PhytoRef

- Uses *plastidal* 16S rRNA gene to identify photosynthetic microeukaryotes
- 6,490 plastidial 16S rDNA reference sequences
- Latest release: 2015

A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy

Structure of ASV abundance table

Samples


Taxonomic Assignments

ASVI	MNAW051	4 MNAW0515	NAW0514 N	JAW0515	NSAIW/0514	NSAIW0515		W0515 Kingdom	Phylum	Class	Order	Family	Genus	Species	
ASV1		0 0		55				-	Proteobacteria	Gammaproteobacteria	Oceanospirillales	Alcanivoracaceae	Alcanivorax	borkumensis	
ASV1		70 457	15	430		913				Alphaproteobacteria	SAR11	Pelagibacter	NA	NA	
ASV1		13 C		430		0		0 Bacteria	Proteobacteria	Gammaproteobacteria	Alteromonadales	Pseudoalteromonadaceae	Pseudoalteromonas	denitrificans	
ASV1		0 0		87		0	0	0 Bacteria	Proteobacteria	Alphaproteobacteria	SAR11	Pelagibacter	NA	NA	
ASV1		15 0		41		0	0			Thermoplasmata	Methanomassiliicoccales	Methanomassiliicoccaceae	Methanomassiliicoccus	NA	
		0 0		41	0	0	0	0 Archaea				Flavobacteriaceae	NA	NA	
ASV1		0 0		R			e counts	0 Bacteria		Flavobacteriia	Flavobacteriales				
ASV1						-			Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillaceae	Nisaea	NA	
ASV1		0 0			eads assig	• •	ASV in	0 Bacteria	Proteobacteria	Alphaproteobacteria	SAR11	Pelagibacter	NA	NA	
ASV1		22	0	ea	ich samp	ole)		24 Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	temperans	
ASV1								0 Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	xenophagum	
ASV1		0 0		29		0		0 Bacteria	Actinobacteria	Actinobacteria	Acidimicrobiales	NA	NA	NA	
ASV1		0 0		0						Gammaproteobacteria	Oceanospirillales	Oceanospirillaceae	Oleispira	lenta	
ASV1		0 0		0		312		170 Bacteria		NA	NA	NA	NA	NA	
ASV1		0 0		0	-	0	05	30 Bacteria		Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	temperans	
ASV1		0 0		29		0	0	0 Archaea	Euryarchaeota	Thermoplasmata	NA	NA	NA	NA	
ASV1		53 0		23		0	0	0 Bacteria	Proteobacteria	Gammaproteobacteria	NA	NA	NA	NA	
ASV1	13 13	89 19	15	0	0	0	0	0 Bacteria	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Pseudarcicella	NA	
ASV1	14	0 0	0	95	0	0	0	0 Bacteria	Proteobacteria	Gammaproteobacteria	Alteromonadales	Pseudoalteromonadaceae	Pseudoalteromonas	denitrificans	
ASV1	15	0 0	0	85	0	0	0	0 Bacteria	Cyanobacteria	Chloroplast	Chloroplast	Bacillariophyta	NA	NA	
ASV1	16	25 0	29	41	0	0	0	0 Bacteria	Proteobacteria	Alphaproteobacteria	NA	NA	NA	NA	
ASV1	17	0 0	0	0	26	44	34	29 Bacteria	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillaceae	Magnetospira	NA	
ASV1	18	92 0	36	0	0	0	0	0 Bacteria	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	NA	NA	
ASV1	19	0 0	86	0	0	0	0	0 Bacteria	Proteobacteria	Gammaproteobacteria	NA	NA	NA	NA	
ASV1	2	0 0	0	0	159	154	79	323 Archaea	Euryarchaeota	Thermoplasmata	Methanomassiliicoccales	Methanomassiliicoccaceae	Methanomassilii	coccus	
ASV1	20	0 0	0	38	0	0	0	0 Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	xenophagum	
ASV1	21	0 0	0	0	30	0	34	37 Bacteria	Proteobacteria	Gammaproteobacteria	Oceanospirillales	Oceanospirillaceae	Oleispira	lenta	
ASV1	22	0 0	0	54	0	0	0	0 Archaea	Euryarchaeota	Thermoplasmata	Methanomassiliicoccales		GGAAACTCTGATGCAGCAATGTCGCGTGAGT	ASV Se	sequen
ASV1	23	0 0	0	0	53	26	36	0 Bacteria	Proteobacteria	Gammaproteobacteria	Alteromonadales		GAATAAGCACCGGCTAACTATGTGCCAGCAG GGCGGAATAGTAAGTCGGAGGTGAAAGCCCG		GCGTTGTTCGGAA
ASV1	24	40 C	59	0	0	0	0	0 Bacteria	Bacteroidetes	Flavobacteriia	Flavobacteriales	NA GAGGGTCAGGGGCCGGCA CACTCTGACGCTGAGGCG	GAATTCCTGGTGTAGAGGTGAAATTCGTAGA CGAAAGCGTGGGGGAGCAAACAG	TATCAGGAGGAATACCGGTGGCGA	AAGGCGGCCGGCT
ASV1	25	0 0	0	0	64	0	0	93 Bacteria	Proteobacteria	Alphaproteobacteria	SAR11	Pelagibacter GGAATATTGCACAATGGG	GGAAACCCTGATGCAGCCATGCCGCGTGTGT	GAAGAAGGCCTTCGGGTTGTAAAG	GCACTTTCAGTTG
ASV1	26	0 0	0	0	0	0	0	0 Bacteria	Proteobacteria	Alphaproteobacteria	SAR11	Pelagibacter GGTGCGAGCGTTAATCGG	CCTGCTAGCCGTGACGTTAACAACAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	TGTTAAGCTAGATGTGAAAGCCC	CCGGGCTCAACCT
ASV1		0 0	0	0	0	42	64	0 Bacteria	Proteobacteria	Gammaproteobacteria	Oceanospirillales	GGTCATTTAGAACTGGCA	GACTAGAGTCTTGGAGAGGGGGAGTGGAATTC CTGGCCAAAGACTGACGCTCATGTGCGAAAG	. AGG I G I AGCGG I GAAA I GCG I AG	JAIATCTGGAGGA
ASV1		0 0	0	0	33	0	29	44 Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales		GGAAACTCTGATGCAGCAATGTCGCGTGAGT GAATAAGCACCGGCTAACTATGTGCCAGCAG	GAAGAAGGCCCTTGGGTCGTAAAG	GCTCTTTTATGG
ASV1		52 0	0	0		21		0 Bacteria	Proteobacteria	Gammaproteobacteria	Oceanospirillales	GGGCGTAAAGGGCGCGCA	GGCGGAATAGTAAGTCGGAGGTGAAAGCCCG GAATTCCTGGTGTAGAGGTGAAATTCGTAGA	GGCTCAACCCCGGAGGGTCTTTC	CGAAACTGCTAAT
ASV1		0 0	0	0	136			107 Bacteria	Actinobacteria	Actinobacteria	Acidimicrobiales	Acidimicrob	CGAAAGCGTGGGGAGCAAACAG		
ASV1		0 0	-	0				0 Bacteria		Bacteroidia	Bacteroidales	GGAATATTGGACAATGGG	GCAACCCTGATCCAGCAATACCGCGTGTGT ACCGTTAGCCTTGACGTTAACTTTAGAAGAA	GCACCGGCTAACTCCGTGCCAGCA	AGCCGCGGTAATA
ASV1		0 0		0		0			Proteobacteria	Alphaproteobacteria	Caulobacterales	GGTGCAAGCGTTAATCGG	AATTACTGGGCGTAAAGCGTGCGTAGGCGGT AACTAGAGTATGGTAGAGGAAAGTGGAATTT	TATTAAGTCAGATGTGAAAGCCC	CCGGGCTTAACCT
ASVI	51		0	0	0	0	50	o bacteria	roteobacteria	Apriapi oteobacteria	Caulobacterales	AATGGCGAAGGCAGCTTT >ASV5	CTGGACCAATACTGACGCTGAGGTACGAAAG	GTGGGTAGCAAACAG	

OTUs: Operational Taxonomic Units: created via clustering of reads (old) ASVs: Amplicon Sequence Variants: created via denoising of reads (new) GGGCGTAAAAGCGTACGTAGGCGGATTAGTCAGAGCGAAAGCGCAAAATCCCAGGGCTCAAACCCCTGGAACTGCCTTTGATACTGCTAGTCTTGA GTTCGAGAGAGGTGAGTGGAATTCCAAGTGTAGAGGTGAAATTCGTAGATATTTGGAGGAACACCAGTGGCGAAGGCGGCTCACTGGCC TACTGACGCTGAGGTACGAAAGTGTGGGGGGGGAGCAAACAG

NIAID

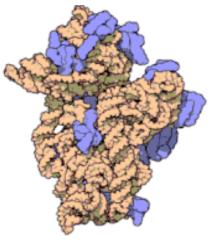
Community Analysis

Questions addressable by metataxonomics

- What organisms are present in each microbiome and in what proportion? (community structure)
- What is the natural variation of organisms within each microbiome (diversity of organisms)?
- How different is community 1 from community 2 in its composition?
- Which organisms are different and which the same between 2 microbiomes?
- Which microbiome is our organism of interest, more abundant in?
- What is the natural non-variable faction of organisms the microbiome (core microbiome)?
- How is the core microbiome different in community 1 vs community 2?
- How does the diversity of community change depending on factors (e.g. treatment, time)?
- Which organisms responds to factors 1, factor 2, etc.?

Questions NOT addressable by 16S amplicon sequencing

- What is the functional capacity of the microbiome as a whole or for each individual organism?
- What is the finer scale (strains-level) and larger scale (cross-kingdom) diversity of a microbiome?
- How does a community adjust to factor 1 in terms of its functionally?

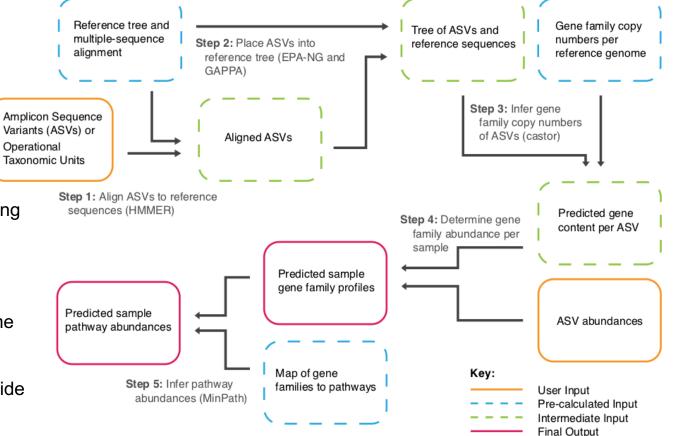


Limitations of 16S rRNA gene

The 16S rRNA gene has become the most sequenced taxonomic marker and the cornerstone for current systematic classification of bacteria and archaea.

Restrictions, caveats, limitations:

- > No single variable region captures the variability of the full gene
- Different variable regions have different capacity to differentiate taxonomies
- Due to inherent biases of this method, abundance estimates can be askew
- > 16S rRNA gene copy number issues can distort true abundances
 - > Gene number can vary from species to species, creating distorted profiles
 - Gene sequence can vary between copies even within the same organism
- > Inferring *true* phylogenic relations from a single gene can be risky!
 - Even full length 16S gene cannot absolutely resolve the diversification of closely related organisms (species or strains)
 - Some evolutionarily distant organisms have similar 16S rRNA gene copies, which can cluster closely in a phylogenic tree

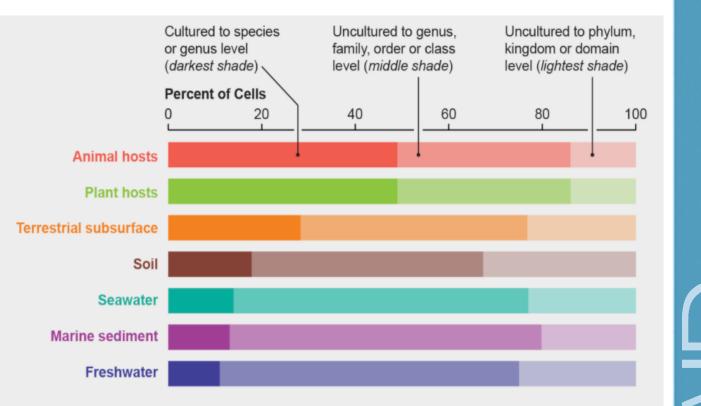


PICRUSt2

Phylogenic Investigation of Communities by Reconstruction of Unobserved States ... 2

An *in silico* approach to **predicting** the functional **potential** of metagenome using marker gene data (16S) and a database of annotated reference genome.

- The genetic content of each sample is *estimated* using the taxonomic identities of the input ASVs, and their most closely related genomes from IMG database.
- Gene abundances are approximated based on the ASV abundances and are corrected for gene copy numbers, again estimates from the reference genome for each taxa.
- The genetic content and abundances (presented as KO & EC numbers) are translated into community-wide pathways abundances, derived from the <u>MetaCyc</u> database for metabolic pathways.



Data resource explosion

NGS has produced data explosion, causing new opportunities for exploration, but also challenges in the scalability and compatibility of data analysis.

- Opportunities: obtaining insight into the microbial "dark matter" problem without culturing
- Challenges: Vast quantities of available data pose problems in its analytical reproducibility, compatibility and comparability

Credit: Amanda Montañez; Source: "Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes," by Karen G. Lloyd et al., in *mSystems*, Vol. 3, No. 5; September/October 2018

Data availability & quality control

- The wide variation in biological questions, coupled with technical variability during sample processing and bioinformatic tools and pipelines for analysis, makes it impossible create a single best protocol for all studies.
- Huge variations are observed between the results of analyses from studies using various DNA extraction methods, 16S primer selection, or bioinformatics pipelines, even when utilized on the same samples.
- the <u>Microbiome Quality Control Project (MBQC</u>) attempts to evaluate and standardize technologies and computational methods for assessing (at least the) human-associated microbial communities.

Metadata is just as important as the data itself!

MIxS

- Metadata considered *critical* to data interpretation & reproducibility.
- Needs to be recorded & provided as accurate and concise as possible
- ... Community Driven Metadata Standards are being implemented (e.g. NCBI BioSample db)! ...to promote international standardization of (meta)genome quality and accompanying metadata (e.g. vocabulary/ontology, informational fields)
- ...to promote data discoverability, comparability and reproducibility within and across studies.
- Checklists of **Minimum Information about any (x) Sequence (MIxS)** available to implement informational requirements (required metadata) for different types of studies (e.g. host-associated vs soil vs water-associated samples)
 - Checklists for metaxtaxonomic (marker gene) studies: MIMARKS (Minimal Information about a Marker Sequence)
 - Checklists for (meta)genomic studies: MIGS & MIMS (Minimal Information about a (Meta)Genomic Sequence)

These and other standardization checklists available at: https://gensc.org/mixs/

Thank you

Questions

Bioinformatics and Computational Biosciences Branch Office of Cyber Infrastructure and Computational Biology