

Introduction to Single-cell RNA-seq

Colton McNinch, PhD.

February 14, 2024

Bioinformatics and Computational Biosciences Branch (BCBB)

National Institute of Allergy and Infectious Diseases (NIAID)

Bioinformatics and Computational Biosciences Branch

Centralized resource to provide:

- o expert training
- \circ consultation
- \circ collaboration

Domain expertise provided in numerous areas:

- o Clinical Genomics
- Metagenomics
- o Microbial Genomics
- o Data Science, Biostatistics, and Informatics
- o Structural Biology
- o 3D Printing and Biovisualization
- Imaging
- Software development

More information:

https://www.niaid.nih.gov/research/bioinformatics-computational-biosciences-branch

Feel free to email us! bioinformatics@niaid.nih.gov

BCBB

Outline

scRNA-Seq Overview

- Differences from bulk RNA-Seq
- Evolution of the technology used
- Major steps of a scRNA-Seq project
- Comparison of current protocols
- Cell isolation strategies
- Transcript quantification strategies

scRNA-Seq experimental design

- Choosing the appropriate protocol
- Avoiding batch effects

Data analysis

- Raw data processing
- Major steps following raw data processing
 - Quality control
 - Normalization
 - Variable feature selection
 - o Dimensionality reduction
 - Cell clustering
 - Further downstream analyses

Helpful Resources

scRNA-Seq Overview

Differences from bulk RNA-Seq

Bulk RNA-Seq

Measure **average gene expression** across a population of cells

More sensitive lowly expressed genes often detected

Examine all RNA types

Measure **cell-specific expression** in each cell type

Less sensitive lowly expressed genes often missed

Examine only poly(A) mRNAs

National Institute of

Infectious Diseases

Allergy and

scRNA-Seq Overview Evolution of the technology used

Study publication date

 \bigcirc

SCRNA-Seq Overview Major steps of a scRNA-Seq project

1. <u>Sample Preparation</u>

- Isolate cells from complex tissue
- Lyse cells
- Add sequencing reagents

2. scRNA-seq

- Prep RNA for sequencing
- Sequence RNA libraries

3. Data processing

- Separate (demultiplex) reads by cell barcode
- Align reads to reference genome
- Correct read errors

4. Data analysis

- Quality control
- Dimensionality reduction (PCA/UMAP/t-SNE)
- Cell-type clustering
- Differential expression analysis
- Many other analyses

scRNA-Seq protocols

Comparison of current protocols

		SMART-seq2	CEL-seq2	STRT-seq	Quartz-seq2	MARS-seq	Drop-seq	inDrop	Chromium	Seq-Well	sci-RNA-seq	SPLiT-seq
5	Single-cell isolation	FACS, microfluidics	FACS, microfluidics	FACS, microfluidics, nanowells	FACS	FACS	Droplet	Droplet	Droplet	Nanowells	Not needed	Not needed
	Second strand synthesis	TSO	RNase H and DNA pol I	TSO	PolyA tailing and primer ligation	RNase H and DNA pol I	TSO	RNase H and DNA pol I	TSO	TSO	RNase H and DNA pol I	TSO
	Full-length cDNA synthesis?	Yes	No	Yes	Yes	No	Yes	No	Yes	Yes	No	Yes
	Barcode addition	Library PCR with barcodec primers	Barcoded RT primers	Barcoded TSOs	Barcoded RT primers	Barcoded RT primers	Barcoded RT primers	Barcoded RT primers	Barcoded RT primers	Barcoded RT primers	Barcoded RT primers and library PCR with barcoded primers	Ligation of barcoded RT primers
	Pooling before library?	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Library amplification	PCR	In vitro transcription	PCR	PCR	In vitro transcriptior	PCR	In vitro transcriptior	PCR	PCR	PCR	PCR
	Gene coverage	Full-length	3'	5'	3'	3'	3'	3'	3'	3'	3'	3'
	Number of cells per assay	10 ⁵					Ī	Ī				

Numerous scRNA-Seq protocols

- Each have strength & weaknesses

Biggest differences

- How cells are isolated

- How transcripts are quantified

scRNA-Seq protocols Cell isolation strategies

Microtitre-plate

- Isolate cells into individual wells of a plate
 - Fluorescent Activated Cell Sorting (FACS)
- Low throughput
- High sensitivity

Microfluidic-array

- Isolate cells into individual wells of a microfluidic chip
 - Cells travel through microscopic channels and chambers and are sorted by size and other physical properties
- Medium throughput
- Medium sensitivity

Microfluidic-droplet (Droplet)

- Isolate cells into nanoliter-sized oil droplets
 - 10x Genomics
- High throughput
- Low sensitivity

Microfluidic Arrays

Microfluidic Droplets

scRNA-Seq protocols

Cell isolation strategies

Combinatorial barcoding

- No need to isolate cells •
 - Parse Biosciences
- High throughput •
 - Up to a million cells
- Low sensitivity

scRNA-Seq protocols

Transcript quantification strategies

Full-length

Uniform read coverage across transcript

Lower throughput

Tag-based

National Institute of

Infectious Diseases

Allergy and

Capture only either the 5' or 3' ends

Higher throughput

scRNA-Seq experimental design NH National Infectious

Choosing the appropriate protocol

What is the research goal?

Characterize isoform expression

- Full-length transcript quantification protocol

Characterize cell expression in heterogeneous tissue

Droplet-based cell isolation protocol

Popular methods

SMART-seq2

- best for small number of cells at great detail
- low-throughput
- full-length transcript quantification -

10x Chromium

- best for large number of cells from heterogeneous tissue
- high-throughput
- 3' or 5' ends of transcripts

scRNA-Seq experimental design National Institute of Allergy and Infectious Diseases Avoiding batch effects

Processing raw full-length scRNA-Seq data

- Input = raw RNA-Seq reads (.fastq.gz files)
- Output = gene count matrix

Using a reference genome

- Align reads with splice-aware aligner
 - STAR or hisat2
- Quantify gene/transcript read counts
 - HTSeq2 or featureCounts

Using a reference transcriptome

- Using a pseudo-alignment tool
 - kallisto
 - Salmon
- Alignment & quantification taken care of by the same tool

https://tinyheero.github.io/2015/09/02 /pseudoalignments-kallisto.html

Processing raw tag-based scRNA-Seq data

Processing raw tag-based scRNA-Seq data

Five main steps:

- 1) Mapping reads to reference genome (transcriptome)
- 2) Assigning reads to genes
- 3) Assigning reads to cells (cell barcode demultiplexing)
- 4) Counting the number of unique RNA molecules (UMI deduplication)
- 5) Cell filtering

Cell Ranger performs all five steps

- Default tool for 10x Genomics Chromium scRNA-Seq data
- Easy to use and very thorough

Major steps following raw data processing

Pre-processing

Quality control Normalization Variable feature selection

Dimensionality reduction

Linear Non-linear

Cell clustering

Downstream analysis

Identifying cell population marker Differential expression analysis Trajectory analysis

Data analysis Quality control

	Cell1	Cell2		CellN	
Gene1	3	2		13	
Gene2	2	3		1	
Gene3	1	14		18	
•••	9 0	81	*	59	
222		5 3	2	25	
		1	•		
GeneM	25	0	÷.	0	

<u>Main goal</u>:

Remove poor quality cells

Common criteria used:

1) # of unique genes detected in a cell

- Low-quality cells or empty droplets have fewer genes detected
- Cell doublets or multiplets have many genes detected

2) # of molecules detected within a cell (correlates with unique genes)

3) % of reads mapping to the mitochondrial genome

Low-quality / dying cells exhibit mitochondrial contamination

Data analysis Normalization

Main goals:

- 1) Remove technical bias from gene expression data
- 2) Ensure downstream analyses aren't dominated by only the most highly expressed genes

scRNA-seq uses small amount of input RNA

more inaccurate/variable measurements

Major challenge of scRNA-seq data:

- Transcripts often 'missed' (not detected) during sequencing though they are actually expressed
- Known as dropouts
- Requires different transformation methods than Bulk RNA-Seq

18

Data analysis Normalization

Two steps:

- 1) Scaling
 - Accounts for cells not having same sequencing depth or same amount of input RNA
- 2) Transformation
 - Accounts for genes being expressed at different levels and with different variation
 - Accounts for "dropouts" (moderate/high expression in one cell but not detected in another)
 - Numerous methods:

Variable feature selection

<u>Main goal</u>:

Keep genes with relevant biological information, while excluding uninformative genes

- Reduces dimensionality of data
- Enhances the ability to detect biological signal in dataset
- Typically aims to keep 500-2000 genes with most cell-to-cell variability

Data analysis Dimensionality reduction

Main goal:

Condense complex (multi-dimensional) data into simpler (lower-dimensional) representations while keeping the most important properties of the data

Required to perform important downstream analyses (e.g. clustering and visualization)

<u>Linear</u>

• PCA (Principal Component Analysis)

Non-linear

- t-sne (t-distributed stochastic neighbor embedding)
- UMAP (Uniform Manifold Approximation and Projection)

Data analysis Cell clustering

Main goal:

Separate a population of cells into transcriptionally distinct sub-populations (clusters)

Main steps:

- 1) Calculate how similar each of the cells are to each other (a similarity score metric)
- 2) Partition/group (cluster) cells based on those scores

Further downstream analyses

Identifying cell population markers

<u>Goal</u>: Determine the genes most differentially expressed between cell clusters Helps to determine cell identities of different cell clusters

Differential expression analysis

Goal: Determine the genes most differentially expressed between cell clusters or conditions

Trajectory analysis

Goal: Determine the differentiation trajectory of a set of cells

Murine cortex differentiation

Helpful resources

Guided courses and vignettes

- Wellcome Sanger Institute: https://www.singlecellcourse.org/
- Broad Institute: https://broadinstitute.github.io/2020_scWorkshop/
- Seurat vignettes: https://satijalab.org/seurat/articles/get_started.html

Review articles

"Current best practices in single-cell RNA-seq analysis: a tutorial"

"Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data"

Preparing for the Hands-on Tutorial

Request an HPC server account

- Biowulf HPC instructions:
 - o https://hpc.nih.gov/docs/accounts.html

 \odot All NIH researchers in the Enterprise directory can request access

• Skyline HPC instructions:

 \odot NIAID researchers are automatically provided account access

Can test access here: <u>https://skyline.niaid.nih.gov/access/</u>

Install R and R studio

o <u>https://posit.co/download/rstudio-desktop/</u>

 \circ R version 4.0 or greater