

Course Organization

- Introduction to Bayesian phylogenetics
- Introduction to BEAST
- Building a Bayesian phylogeny
- Incorporating sample time in the phylogeny
- Estimating demographic parameters
- Estimating species trees from gene trees
- Estimating ancestral trait states (esp. geography)

NIH National Institute of Allergy and Infectious Diseases

Lecture Organization

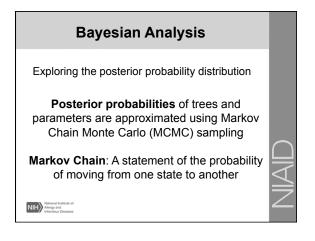
- Why Bayesian phylogenetics is well-suited to the analysis of pathogen molecular evolution
- A short tour of Bayesian MCMC analysis
- What is BEAST? An overview of the BEAST package
- BEAST Analysis Demo

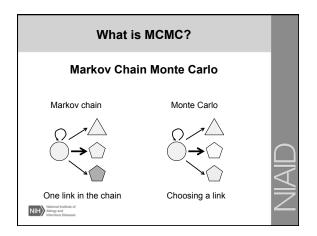
NIH National Institute of Allergy and Infectious Diseases

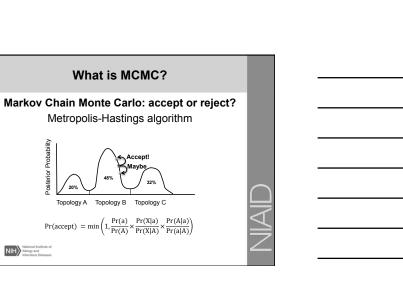
What's so special about pathogens?

- Short generation time
- Rapid evolution
- Genotypes easy, phenotypes hard
- Large populations
- Structured populations
- Rigorous temporal sampling of genotypes

Why use Bayesian methods on pathogens?


- Coalescent approach is more appropriate
- Can incorporate temporal data
- Can incorporate geographical data
- Can incorporate host data


NIH National Institute of Allergy and Infectious Diseases


What is Bayesian analysis?

- Calculation of the probability of parameters (tree, substitution model) given the data (sequence alignment)
- $p(\theta|D) = (Likelihood x prior)/probability of the data$
- $p(\theta|D) = p(D|\theta)p(\theta)/p(D)$

	National Institute of
NIH	Allergy and
	Infectious Disease

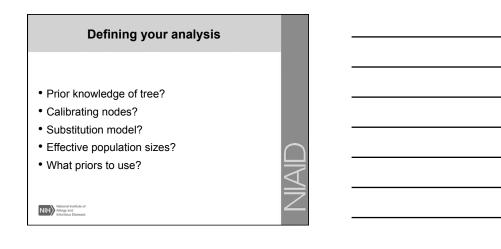
What is **BEAST**?

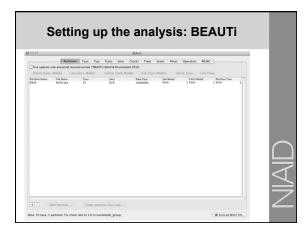
- Bayesian Evolutionary Analysis Sampling Trees
- A collection of programs for performing Bayesian MCMC analysis of molecular sequences
- Can incorporate sample time information
- Can perform a broad range of other evolutionary analyses using sequence data.

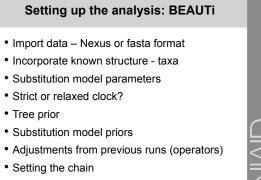
What is **BEAST**?

The Programs:

- BEAUti Creating XML input files
- BEAST MCMC analysis of molecular sequences
- Tracer Viewing MCMC output
- LogCombiner Combining output files
- TreeAnnotator Generate the consensus tree
- FigTree Drawing a tree


NIH National Institute of Allergy and Infectious Diseases


NIH National Institute of Allergy and Infectious Diseases


Different types of BEAST analyses

- Calculating a Bayesian coalescent phylogeny
- Calculating a Time-Stamped Bayesian coalescent
- Estimated population dynamics (Bayesian skyline/ skyride/skygrid)
- Combined gene and species phylogeny estimate (*BEAST)
- Phylogeographic analysis (time and location data)

NIH National Institute of Allergy and Infectious Diseases

Setting up the analysis: BEAUTi

Import data: Nexus format

#NEXUS [These are comments. They are ignored by the program.]

Begin data; dimensions ntax=5 nchar=15; format datatype=DNA gap=- missing=?; matrix Bug1 ACCGAATACGGGCA Bug2 ACCGAATACGGGCA Bug2 ACTATATACCGGCA BugP ACTATATACCGGCA BugPXWH ACCAAA----CGGGCA ; End; Window Manda Ma

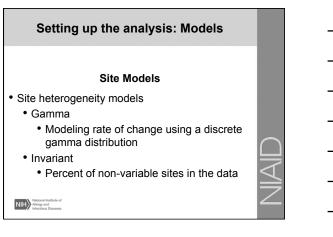
Setting up the analysis: BEAUTi

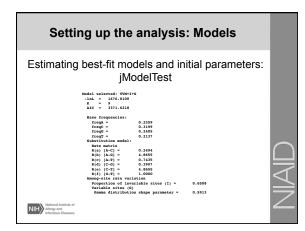
Import data: Fasta format

>Bug1 ACCTGATTACGGGCA >Bug2 ACCCGAATACGGACA >Bug3 ACCTATTTACGCCCA >BugF ACTATATTACCGGCA

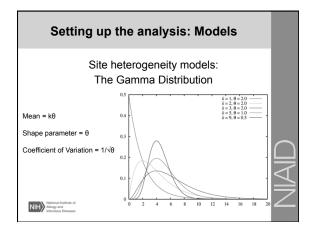
>BugBX4W ACCAAA---CGGGCA

NIH National Institute of Allergy and Infectious Diseases


Setting up the analysis: Models


Substitution Models

 HKY - Unequal base frequencies and transition/ transversion rate ratio


 Must specify prior and initial estimates for transition/ transversion rate ratio

- GTR Unequal base frequencies and each substitution has its own rate parameter
 - Must specify prior and initial estimates for each substitution rate (relative to C-T rate)

Setting up the analysis: Models

Clock Models

- Strict clock same rate for all branches
- Relaxed clock independent rate among branches
 - Exponential or Lognormal distribution of rates
- For contemporaneous data setting a fixed mean substitution rate of 1.0 (uncheck "Estimate") results in node ages as substitutions per site (MrBayes branch lengths)

Setting up the analysis: Models

Tree Prior

- Coalescent
 - constant size
 - exponential growth
 - GMRF Bayesian Skygrid
- Speciation
 - Yule process
 - Birth-Death
- Epidemiology

NIH National Institute of Allergy and Infectious Diseases

Setting up the analysis: Models

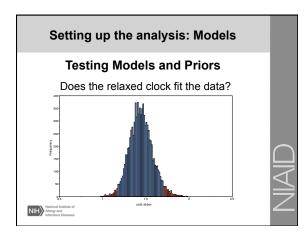
Testing Models and Priors

Path Sampling/Stepping Stone analysis

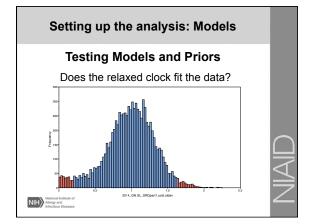
- Estimation of marginal likelihoods under different analysis parameters.
- Invoke on MCMC tab in BEAUti.
- Separate runs necessary for each changed parameter.
- Runs a complete MCMC analysis, then the X PS/SS iterations.

NIH National Institute of Allergy and Infectious Diseases

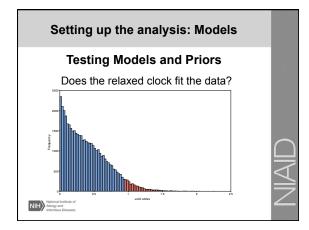
<text><section-header><section-header>



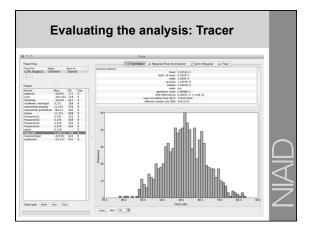
Setting up the analysis: Models


Testing Models and Priors

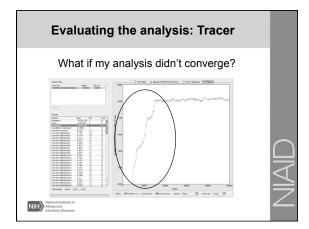
Path Sampling/Stepping Stone analysis log marginal likelihoods


	Path Sampling	Stepping Stone
HKY/strict clock	-4725.85	-4728.68
HKY+gi/strict	-4515.99	-4518.05
HKY+gi/LN relaxed	-4436.10	-4438.75
GTR/strict clock	-4746.62	-4749.14
GTR+gi/strict	-4526.87	-4529.05
GTR+gi/LN relaxed	-4548.39	-4551.22

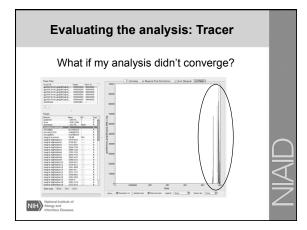




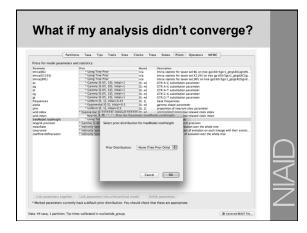
Evaluating the analysis: Tracer

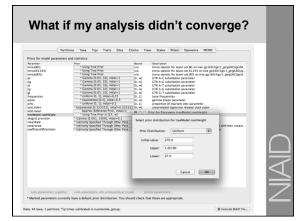

- Check for convergence
- Evaluating ESS values
- Viewing behavior of parameter estimates
- Examining traces
- Extracting parameter estimates and statistics

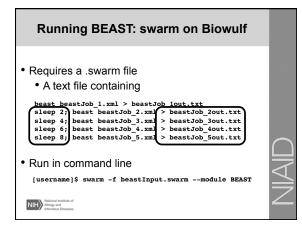
NIH National Institute of Allergy and Infectious Diseases

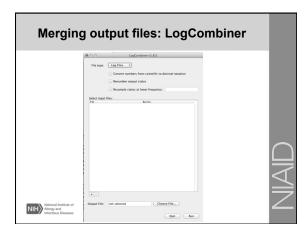

Evaluating the analysis: Tracer

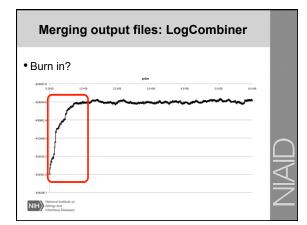
- What if my analysis didn't converge?
- Can I make multiple simultaneous runs?
 Swarm on Biowulf

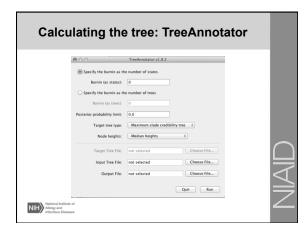










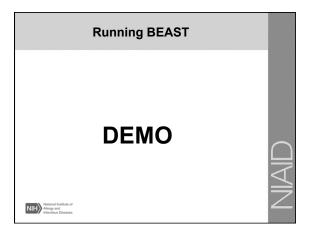

Merging output files: LogCombiner

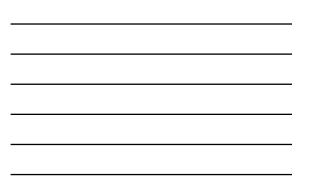
- Log files vs Tree files
- Selecting files

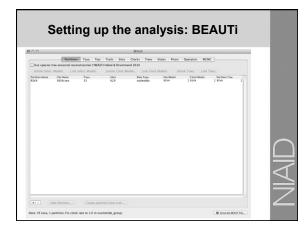
- Specifying burn-in (number of steps or trees)
- Specifying subsampling
- Specifying output file

Calculating the tree: TreeAnnotator

- Burn in? Number of trees or the number of steps.
- \bullet Tree Type: MCC, Max sum of CC, or target
- Node heights: target, mean, or median
- Specify input and output files

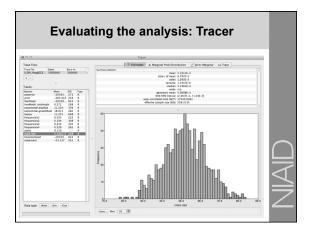

NIH National Institute of Allergy and Infectious Diseases

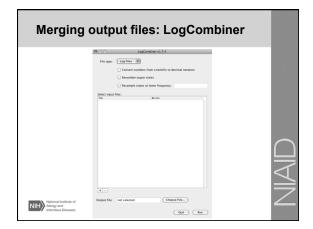

<complex-block>

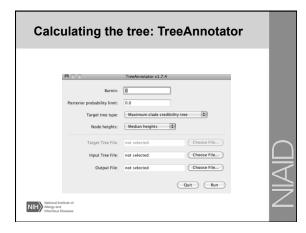


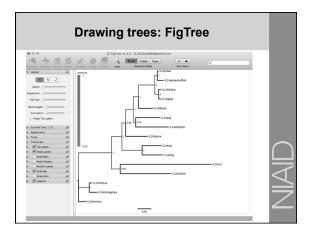
- Specifying additional values (esp. posterior probabilities)
- Tree appearance
- Ordering branches
- Re-rooting
- Exporting graphics

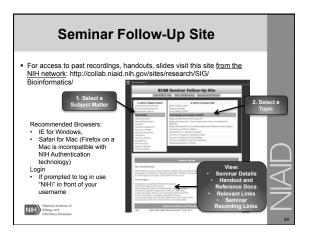
NIH National Institute of Allergy and Infectious Diseases

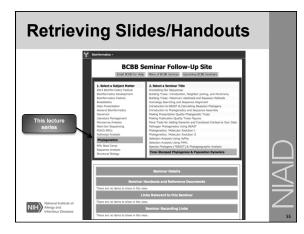




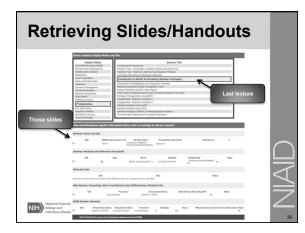








BEAST2


- Still ... Bayesian Evolutionary Analysis Sampling Trees
- Modular rewrite of the BEAST software
- Various evolutionary analyses performed through a system of independent software packages.
- Access software, documentation, etc., through the website beast2.org
- Still a few bugs in the system...



