National Institute of Allergy and Infectious Diseases

Phylogenetics and Sequence Analysis

Tree Building 1

Kurt Wollenberg, PhD

Phylogenetics Specialist Bioinformatics and Computational Biosciences Branch Office of Cyber Infrastructure and Computational Biology

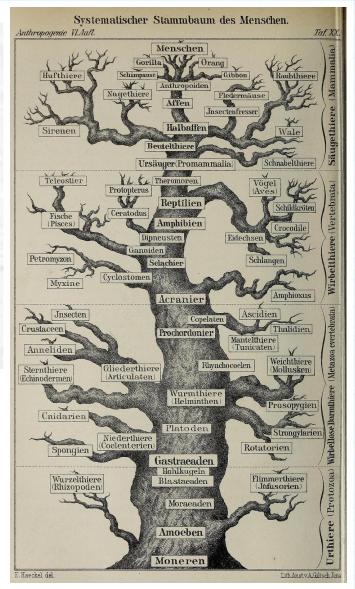
March 2024

National Institute of Allergy and Infectious Diseases

	Selection View		External commands He	lp	💼 💼 🙆		
liView - IL1A17dnaMesq.nex							
		10	20	30	40		
IL1AhypPossum	ATGGCCA	GAGTCCCT	GAC <mark>GTG</mark> TTGGA	G	CATAGTG		
IL1Arat	ATGGCCA	A A <mark>G T T</mark> C C T (G A C T T G <mark>T T T</mark> G A	А <mark>бас</mark> ста <mark>ааб</mark> аас	TGCTATAGTG		
IL1Amouse	ATGGCCA2	A A <mark>G T T</mark> C C T (G A C T T G <mark>T T T</mark> G A	А <mark>бас</mark> ста <mark>ааб</mark> аас	TGT <mark>TAC</mark> AGTG		
IL1Arabbit	A T G G C C A A	A A <mark>G T C </mark> C C T (G A T C T G <mark>T T T</mark> G A	А <mark>С А С С Т А</mark> А А С <mark>А А С</mark>	TGT <mark>TTC</mark> AG T G		
IL1Ahuman	ATGGCCAA	A A <mark>G T T</mark> C C A (G A C <mark>A T G T T T</mark> G A	A	TGT <mark>TAC</mark> AGTG		
IL1Arhesus	A T G G C C A 2	A A <mark>G T T</mark> C C A (G A C <mark>A T G T T T</mark> G A	A	TGTTACAGTG		
IL1Amangabey	A T G G C C A 2	A A <mark>G T T</mark> C C A (G A C <mark>A T G</mark> T T T G A	A	TGTTACAGTG		
IL1Acat	A T G G C C A 2	A A <mark>G T T</mark> C C T (GACCTC <mark>TTT</mark> GA	A	TGTTACAGTG		
IL1Adog	A T G G C C A 2	AA <mark>GTT</mark> CCT	GACCTC <mark>TTT</mark> GA	A	TGTTACAGTG		
IL1Adolphin	A T G G C C A 2	A A <mark>G T C</mark> C C C (GACCTCTTTGA	A G A C <mark>C T G</mark> A A G <mark>A A C</mark>	TGTTACAGTG		
IL1Ahorse	A T G G C G A 2	AA <mark>GTC</mark> CCT	G A C C T C T T T G A	A	TGTTACAGTG		
IL1Apig	A T G G C C A 2	AA <mark>GTC</mark> CCT	G A C C T C T T T G A	A	TGCTACAGTG		
IL1Allama	A T G G C C A 2	A A <mark>G T C</mark> C C T (GACCTC <mark>TTT</mark> GA	A	TGTTACAGTG		
IL1Asheep	A T G G C C A 2	A A <mark>G T C</mark> C C T (GACCTCTTTGA	A	TGTTACAGTG		
IL1Agoat	A T G G C C A 2	A A <mark>G T C</mark> C C T (GACCTCTTTGA	A	TGTTACAGTG		
IL1Acow1				A	TGT <mark>TAC</mark> AGTG		
IL1Awaterbuffalo	ATGGCCAA	A A <mark>G T C</mark> C C T (G A C C T C <mark>T T T</mark> G A	A G A C <mark>C T G</mark> A A <mark>G A A C</mark>	TGT <mark>TAC</mark> AG T G		

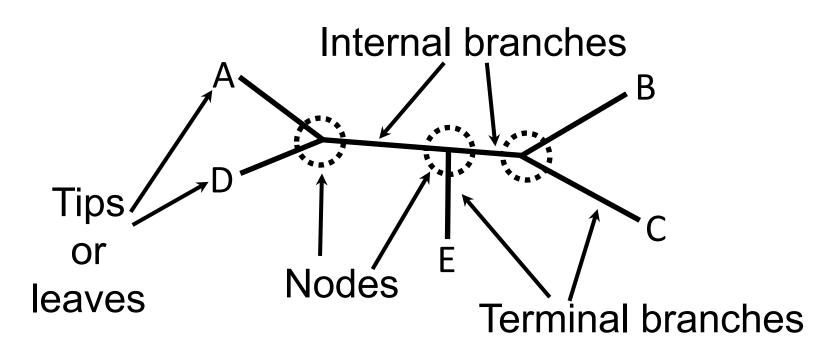
Alignment: 17 sequences 849 pos.

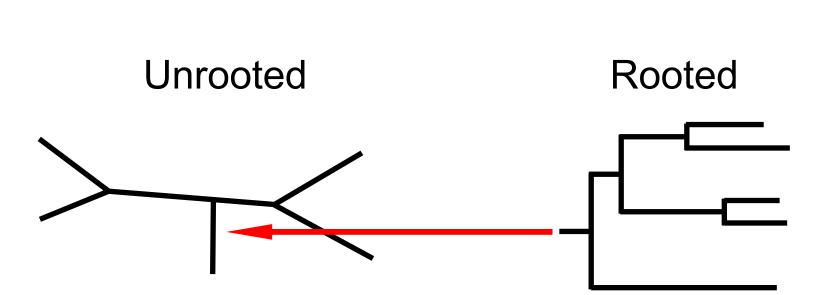
Building trees with our MSA


National Institute of Allergy and Infectious Diseases

C. Darwin, 1837/8

National Institute of Allergy and Infectious Diseases


E. Haeckel, 1868


- Reconstruction of biological history
- Based on similarities and differences among homologous attributes (characters) of the entities under scrutiny
- Molecular characters (sequences, usually) are most often found only in extant organisms

National Institute of Allergy and Infectious Diseases

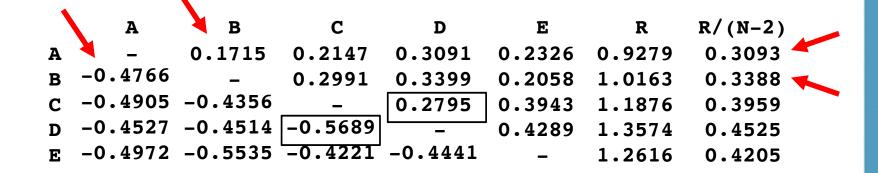
Two approaches to tree building

- Application of an algorithm to build the best tree from the data
- Evaluation of multiple possible best trees using an optimality criterion

The algorithm approach: Distance Methods

- Distance calculated based on a specific substitution model (J-C, Kimura, BLOSUM64, etc.)
- Distances from each sequence to all others are calculated and stored in a matrix
- Tree then calculated from the distance matrix using a specific tree-building algorithm

The algorithm approach: Distance Methods


Tree-Building Algorithms

• UPGMA

Neighbor-Joining

National Institute of Allergy and Infectious Diseases

C to Node 1 distance = 0.2795/2 + (0.3959 - 0.4525)/2 = 0.1114D to Node 1 distance = 0.2795 - 0.1114 = 0.1681

```
A to Node 1 distance = (0.2147 + 0.3091 - 0.2795)/2 = 0.1222
B to Node 1 distance = (0.2991 + 0.3399 - 0.2795)/2 = 0.1798
E to Node 1 distance = (0.3943 + 0.4298 - 0.2795)/2 = 0.2719
```

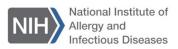
National Institute of Allergy and Infectious Diseases

Hillis, Moritz, and Mable 1996, p. 489

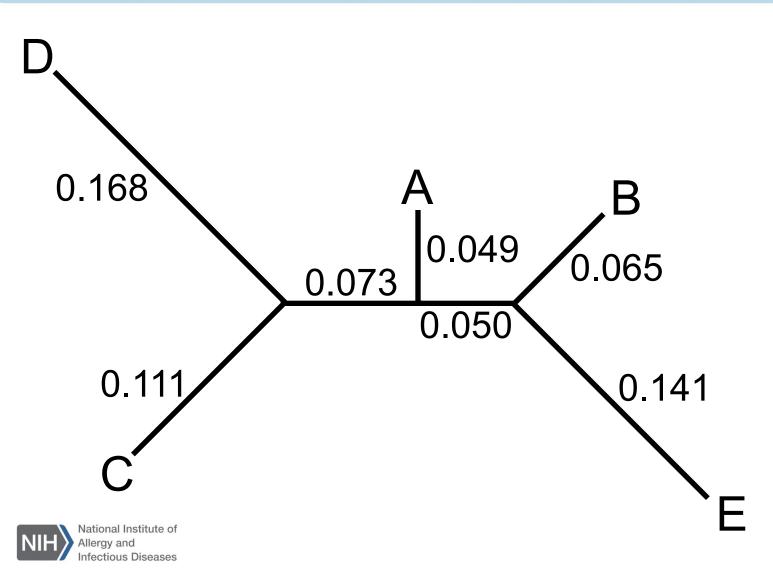
	A	В	E	Node 1	R	R/(N-2)
A	-	0.1715	0.2326	0.1222	0.5263	0.2631
В	-0.3701	_	0.2058	0.1798	0.5571	0.2785
Е			-	• • - • - •	0.7103	0.3551
Node 1	-0.4278	-0.3856	-0.3701	-	0.5739	0.2869

A to Node 2 distance = 0.1222/2 + (0.2631 - 0.2869)/2 = 0.0492Node 1 to Node 2 distance = 0.1222 - 0.0492 = 0.0730

B to Node 2 distance = (0.1715 + 0.1798 - 0.1222)/2 = 0.1146E to Node 2 distance = (0.2326 + 0.2719 - 0.1222)/2 = 0.1912


National Institute of Allergy and Infectious Diseases

Hillis, Moritz, and Mable 1996, p. 489


	В	E	Node 2	R	R/(N-2)
В	-	0.2058	0.1146	0.3204	0.3204
Е	-0.5116	_	0.1912	0.3970	0.3970
Node 2	-0.5116	-0.5116	-	0.3058	0.3058

B to Node 3 distance = 0.1146/2 + (0.3204 - 0.3058)/2 = 0.0646Node 2 to Node 3 distance = 0.1146 - 0.0646 = 0.0500

E to Node 3 distance = $(0.2058 \ 0.1912 \ - \ 0.1146)/2 \ = \ 0.1412$

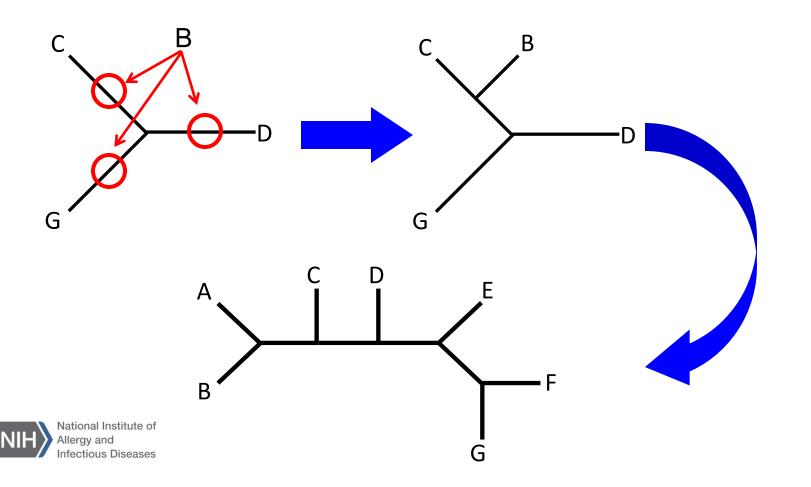
Hillis, Moritz, and Mable 1996, p. 489

- Build a tree or trees
- Evaluate the tree(s) using a specific numerical optimality criterion
- Most common optimality criteria
 - Maximum parsimony
 - Maximum likelihood
- Explore tree space to find the optimal tree

Optimality Criterion: Parsimony

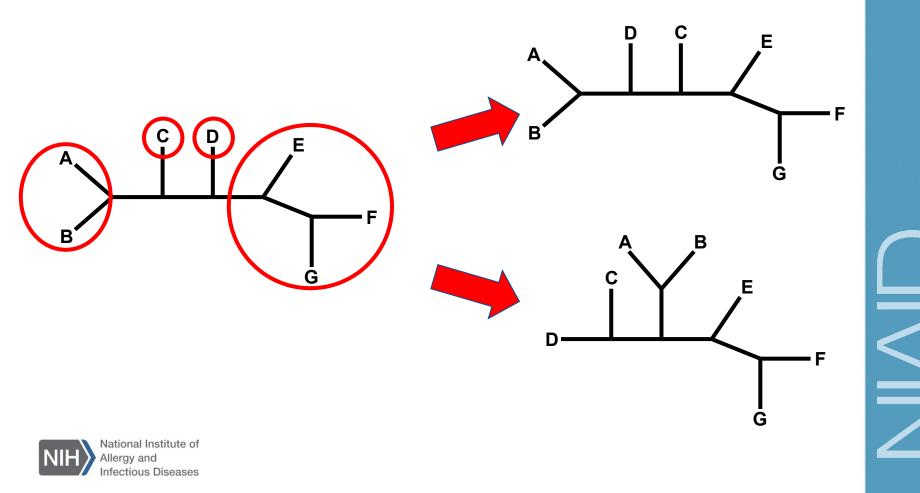
- Occam's Razor: The simplest explanation is the preferred explanation.
- The tree requiring the minimal number of changes is the optimal tree.
- A step is any change in the data from one state to another

- Build the initial tree
 - Construct a neighbor-joining tree
 - Stepwise addition
- Calculate the tree score
 - Count steps (parsimony)
 - Calculate likelihood of the data given the tree
- Explore tree space
 - Branch swapping
 - Tree bisection and reconnection (TBR)
- Is this the best tree? (Stopping criteria)

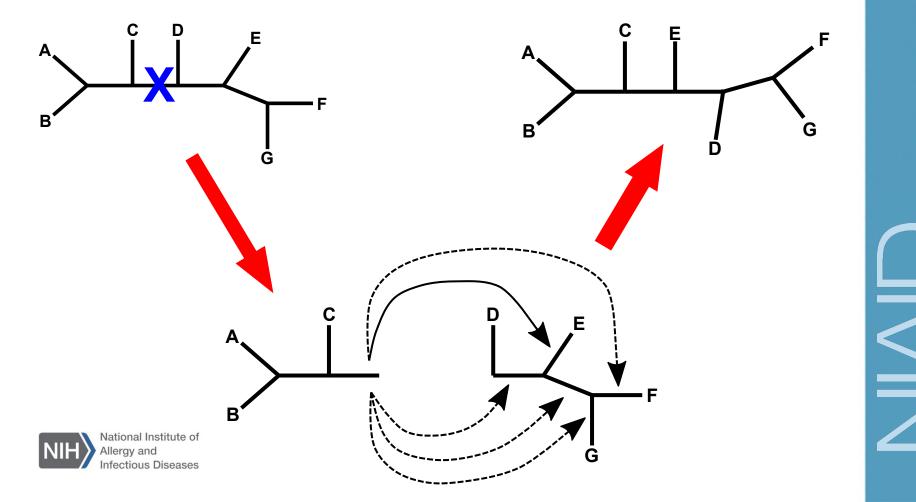

Building the initial tree

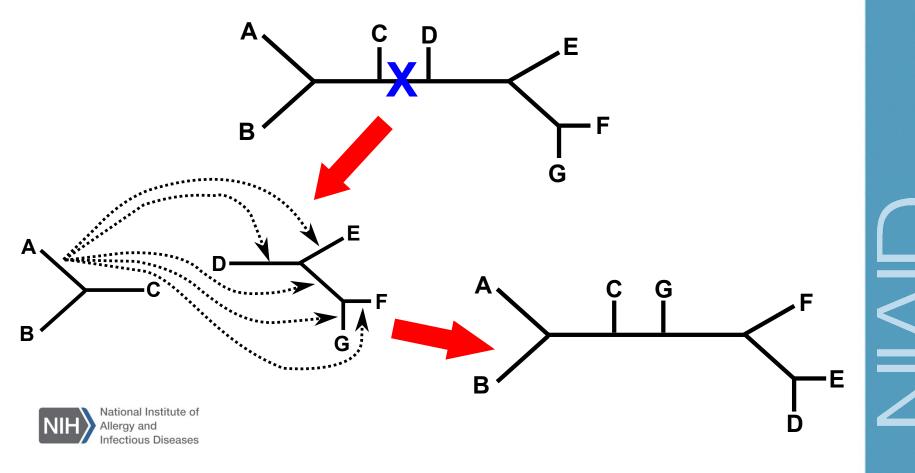
- Stepwise addition
 - Choose three taxa and join
 - Random, or closest
- Select a new taxon to add
- Calculate the optimal 4-taxa tree
- Repeat until all taxa are joined

Building the initial tree



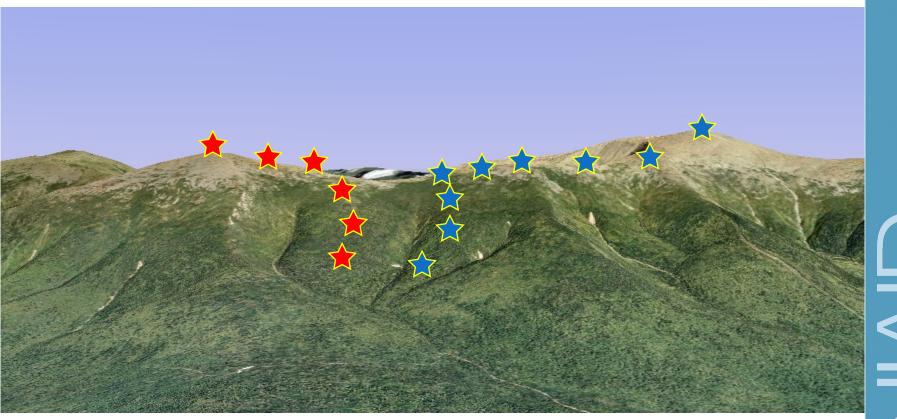
Exploring tree space: Branch swapping


- Nearest neighbor interchange
- Subtree pruning and regrafting
- Tree bisection and reconnection


Branch swapping: Nearest Neighbor Interchange

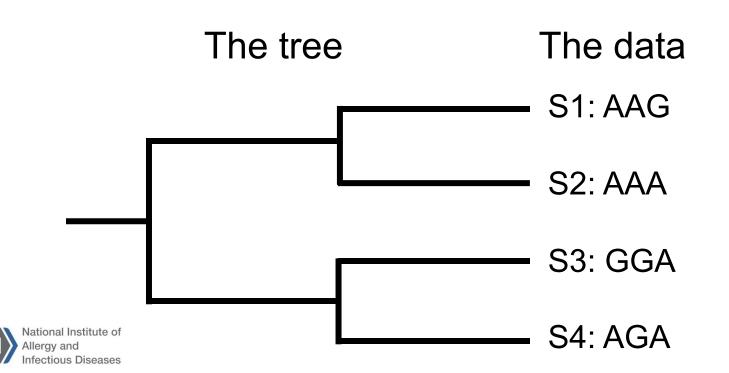
Branch swapping: Subtree pruning and regrafting

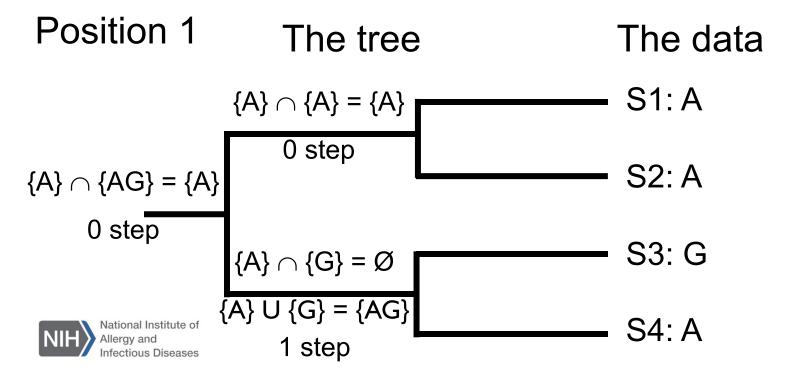
Branch swapping: Tree bisection and reconnection


Exploring tree space

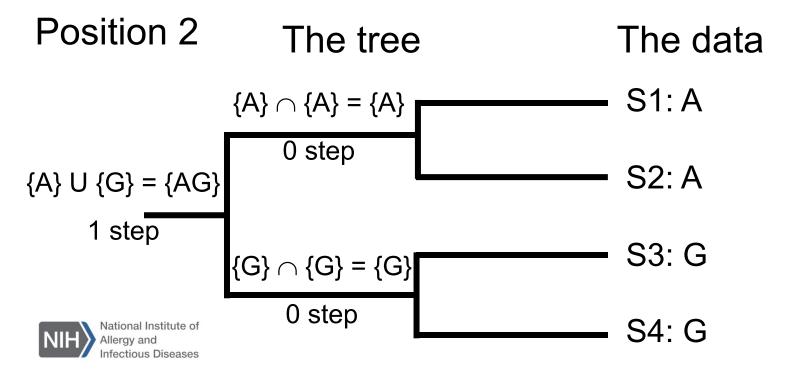
Beware! Hill climbing can often lead to local maxima rather than a global solution.

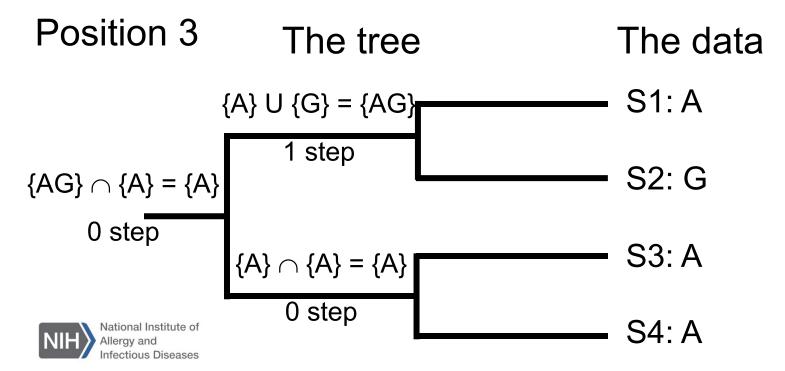
National Institute of Allergy and Infectious Diseases

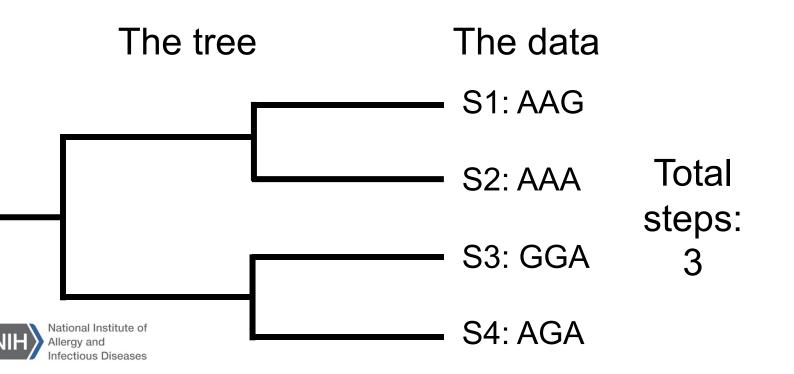

Exploring tree space

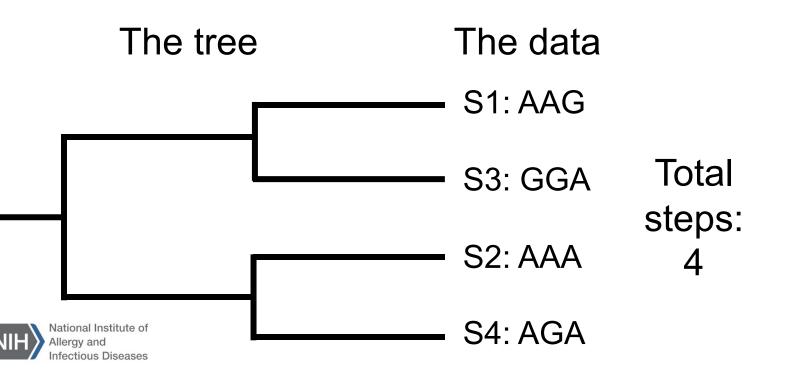


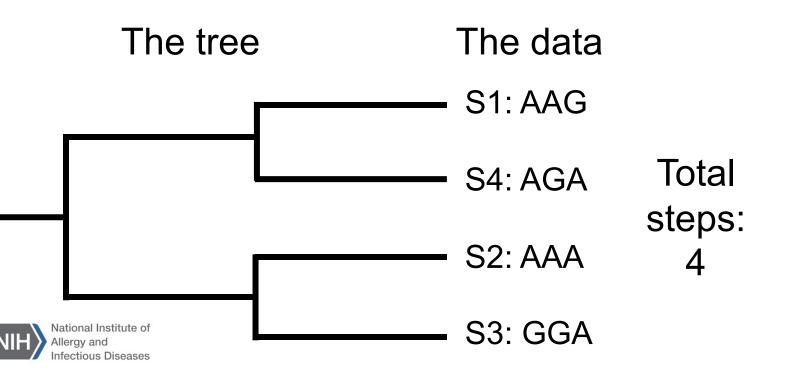
National Institute of Allergy and Infectious Diseases

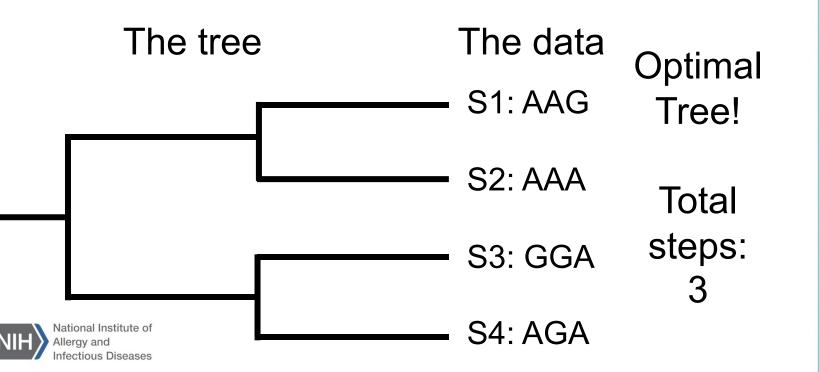

Is this tree optimal?


Is this tree optimal?


Is this tree optimal?


Is this tree optimal?


Is this tree optimal?


Is this tree optimal?

Is this tree optimal?

Is this tree optimal?

File formats for MSA export/Phylogenetics input FASTA

>HCVT050 Hepatitis C virus gene for polyprotein, complete cds, GGTCTTGGTCTACTGTGAGCGAGGAGGCCGGTGAGGACGTCGTCTGCTGCTCGATGTCCT ACACATGGACAGGCGCCTTAATCACGCCATGCGGCGCGGAGGAGACTAAGCTGCCCATCA ATGCGTTGAGCAACTCTTTGCTGCGTCACCACAACATGGTCTATGCCACAACATCCCGCA GCGCAAGCCAGCGGCAGAGAAAGGTCACCTTTGACAGACTGCAAGTCCTGGACGACCACT ACCGGGACGTGCTCAAGGAGAAGGTCACCTTTGACAGACTGCAAGTCCTGGACGACCACT CCGTAGAAGAAGCCTGCAAGGAGAGGCGAAGGCGTCCACAGTTAAGGCTAAACTTCTAT CCGTAGAAGAAGCCTGCAAGCTGACGCCCCCCACATTCGGCCAGATCCAAGTTTGGCTATG GGGCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTAACCACCACCGCTCCGTGTGGA AGGACTTGCTGGAAGACACTGAAACACCAATAAACACCACCATCATGGCAAAAGTGAGG TCTTCTGTGTTCAACCAGAGAAAGGAAGGCCGCCAAGCCCAGCTCGCCTTATCCCAG

File formats for MSA export/Phylogenetics input

PHYLIP

1st line: Number of sequences(space)Number of sites 2nd line: Sequence ID (10 characters max) Sequence

9 1823 HCVT050 GGTCTTGGTCTACTGTGAGCGAGGAGGCCGGTGAGGACGTCGTCTGCTGC HCVT142 GGTCTTGGTCTACCGTGAGTGAGGAGGCCACTGAGGACGTCGTCTGCTGC HCVT169 GGTCTTGGTCTACCGTGAGCGAGGAGGCTAGTGAGGACGTCGTCTGCTGC SE03071689GGTCGTGGTCCACCGTGAACGAGGAGGCTGGTGAGGACGTCGTCTGCTGC HCVT221 GGTCTTGGTCTACCGTGAGCGAGGAGGCCAGTGAAGACGTTGTC MD2 2 GGTCTTGGTCTACTGTAAGCGAGGAGGCTAGTGAGGACGTCGTCTGCTGC HCV1b GGTCTTGGTCTACCGTGAGCGAAGAGGCTGGTGAGGATGTCGTCTGCTGC Contig0001GGTCTTGGTCTACCGTGAGCGAGGAGGCTAGTGAGGACGTCGTCTGCTGC HCVT140GGTCTTGGTCTACTGTGAGCGAGGAGGCTAGTGAGGATGTCGTCTGTTGC

File formats for MSA export/Phylogenetics input NEXUS

#NEXUS					
[Name:	HCVT050	Len:	1823	Check:	5A341084]
[Name:	HCVT142	Len:	1823	Check:	AB5C0B76]
[Name:	HCVT169	Len:	1823	Check:	7EAF66DA]
[Name:	SE03071689	Len:	1823	Check:	1EFF8405]
[Name:	HCVT221	Len:	1823	Check:	3D0C96F0]
[Name:	MD2_2	Len:	1823	Check:	1E2A0948]
[Name:	HCV1b	Len:	1823	Check:	BC29D7FB]
[Name:	Contig0001	Len:	1823	Check:	CD240524]
[Name:	HCVT140	Len:	1823	Check:	2A5C0D4E]

begin data;

dimensions ntax=9 nchar=1823;

format datatype=dna interleave missing=-; matrix HCVT050 GGTCTTGGTCTACTGTGAGC GAGGAGGCCGGTGAGGACGT HCVT142 GGTCTTGGTCTACCGTGAGT GAGGAGGCCACTGAGGACGT HCVT169 GGTCTTGGTCTACCGTGAGC GAGGAGGCTAGTGAGGACGT SE0307168 GGTCGTGGTCCACCGTGAAC GAGGAGGCTGGTGAGGACGT HCVT221 GGTCTTGGTCTACCGTGAGC GAGGAGGCCAGTGAAGACGT MD2 2 GGTCTTGGTCTACTGTAAGC GAGGAGGCTAGTGAGGACGT HCV1b GGTCTTGGTCTACCGTGAGC GAAGAGGCTGGTGAGGATGT Contig000 GGTCTTGGTCTACCGTGAGC GAGGAGGCTAGTGAGGACGT HCVT140 GGTCTTGGTCTACTGTGAGC GAGGAGGCTAGTGAGGATGT

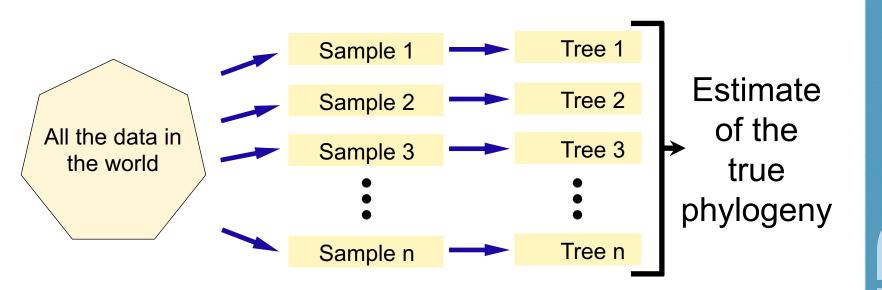
National Institute of Allergy and Infectious Diseases

;

Multiple Sequence Alignment

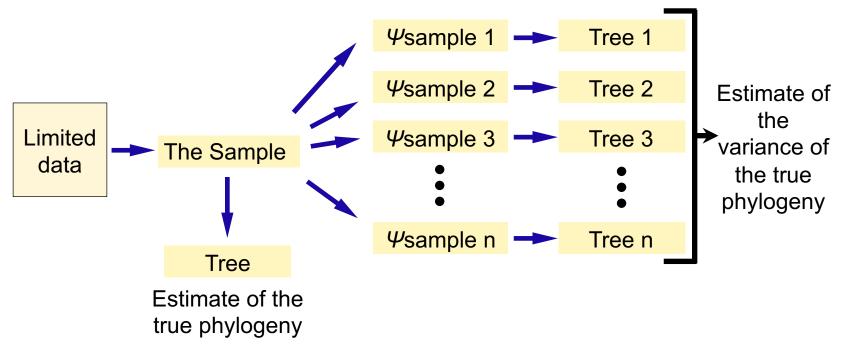
Phylogenetics program input data guidelines

- Make sequence IDs different in the first ten characters
- Only letters, numbers, and "__" in sequence IDs
- Make sure all sequences overlap each other


How reliable are my trees?

Bootstrapping (nonparametric)

National Institute of Allergy and Infectious Diseases


Bootstrapping the ideal world

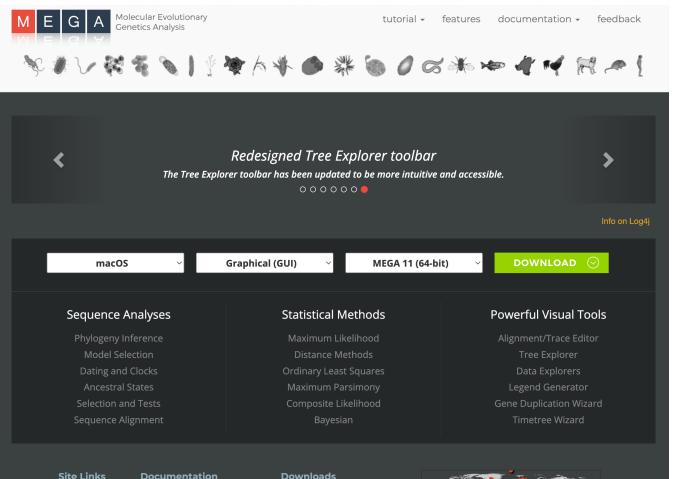
Build replicates by resampling from unlimited data

Bootstrapping the real world

Build pseudoreplicates of unlimited data by sampling with replacement from limited data

Let's build some trees!

Phylogenetic programs (distance and parsimony)


PAUP* – Phylogenetic Analysis Using Parsimony *and other methods

PHYLIP – a suite of phylogenetic programs

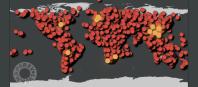
MEGA – An integrated phylogenetic analysis package

Let's build some trees!

Site Links

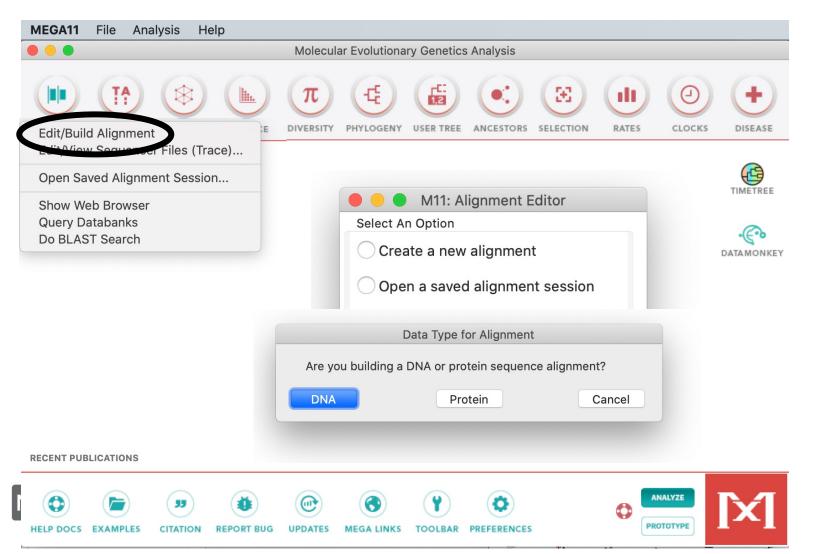
Books / Articles Features

Publications


Feedback

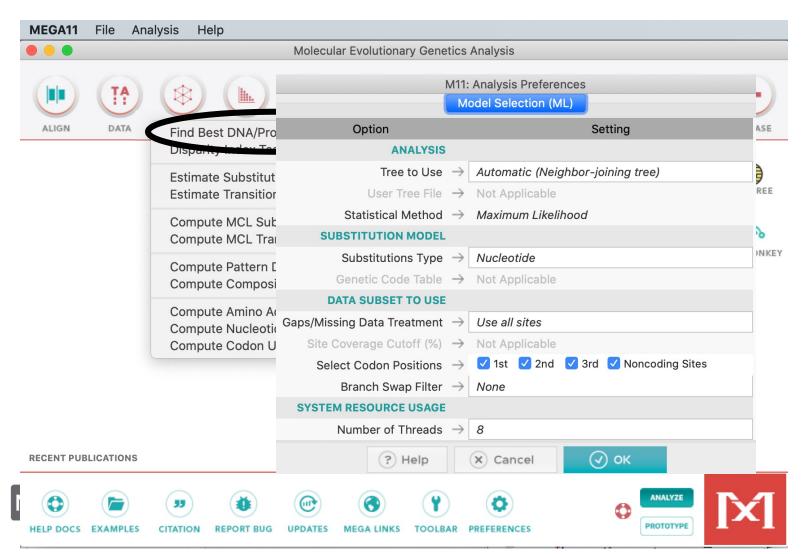
Home Videos Walk through

Online Manual Example Data Update History Known Issues End User Agreement


Downloads

Older Versions

2.900.161 Downloads


Imported sequence alignment: Alignment Explorer

Imported sequence alignment: Alignment Explorer

	Molecular Evolutionary Genetics Analysis
	M11: Alignment Explorer (MEGA11demo_IL1A_RawNMSeq.fas)
	1
IGN	DNA Sequences Translated Protein Sequences
	Species/Abbry
	Species/Abbrv A 1. NM 000575.5 Homo sapiens interleukin 1 alpha (IL1A) transcript varia A A G C T G C C A G C C A G A G A G A G A G T C A T T T C A
	2. NM 001003157.2 Canis lupus familiaris interleukin 1 alpha (IL1A) mRNACAAAAGGCAAAGGCAAGTAGTCATATTTCAA
	3. NM 001009351.1 Felis catus interleukin 1 alpha (IL1A) mRNA ATGGCCAAAGTTCCTGACTCTTTGAAGAC
	4. NM 001009808.1 Ovis aries interleukin 1 alpha (IL1A) mRNA AT G G C C A A A G T C C C T G A C C T C T T T G A A G A C C
1.00	5. NM 001042757.1 Macaca mulatta interleukin 1 alpha (IL1A) mRNA A T G G C C A A A G T T C C A G A C A T G T T T G A A G A C A
1.11	6. NM 001082500.2 Equus caballus interleukin 1 alpha (ILIA) mRNA A A G T C T C C A G G C A G A G A G A G T C A T T T C A
	7. NM 001101684.1 Oryctolagus cuniculus interleukin 1 alpha (IL1A) mRI A G T C A G T T C A T T G G C A C T T G A G T C G G C A A A C
	8. NM 001280664.1 Tursiops truncatus interleukin 1 alpha (IL1A) mRNA A T G G C C A A A G T C C C C G A C C T C T T T G A A G A C C
	9. NM 001290904.1 Bubalus bubalis interleukin 1 alpha (IL1A) mRNA A T G G C C A A A G T C C C T G A C C T C T T T G A A G A C C
	10. NM 010554.4 Mus musculus interleukin 1 alpha (II1a) mRNA A G T C T C C A G G G C A G A G A G G G A G T C A A C T C A
	11. NM 017019.2 Rattus norvegicus interleukin 1 alpha (II1a) mRNA A A G T C T C C A G G G C A C A G A G G G A G T C A A C T C
	12. NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA GACGAGGGAGCCAGTCATCATCATTGTTGCT
	13. NM 214029.1 Sus scrofa interleukin 1 alpha (IL1A) mRNA G T G A A G A T G G C C A A A G T C C C T G A C C T C T T T C
	14. XM 002811788.2 PREDICTED: Pongo abelii interleukin 1 alpha (IL1A) A G T A A C C A G G C A A C A C C A T T G A A G T C T C A T
	15. XM 003804504.2 PREDICTED: Pan paniscus interleukin 1 alpha (IL1 A G T A A C C A G G C A A C A C C A A T G A A G T C T C A T
	16. XM 004031622.2 PREDICTED: Gorilla gorilla gorilla interleukin 1 alp A G T A A C C A G G C A A C A C C A T T G A A G T C T C G T
	17. XM 030827398.1 PREDICTED: Nomascus leucogenys interleukin 1 a A G T A A C C A G G C A A C A C C A T T G A A G T C T C A T A
	18. XM 032177081.1 PREDICTED: Hylobates moloch interleukin 1 alpha A G T A A C C A G G C A A C A C C A T T G A A G T C T C A T T
	19. XM 525866.2 PREDICTED: Pan troglodytes interleukin 1 alpha (IL1A A G T A A C C A G G C A A C A C C A A T G A A G T C T C A T A
NT PL	
	Site # 1 Selected genetic code: Standard
) ((

Imported sequence alignment: Substitution Model

Imported sequence alignment: Model Choice

MEGA Caption Expert: Find Best-Fit Substitution Model (ML

τ Χ τ	-	x	D
--------------	---	---	---

Results

Table. Max	timum Likelih	nood fits of	24 different	nucleotide	e subs	stituti	on mo	odels															
Model	Parameters	BIC	AICc	InL	(+/)	(+G)	R	f(A)	<i>f</i> (T)	f(C)	f(G)	<i>r</i> (AT)	<i>r</i> (AC)	<i>r</i> (AG)	<i>r</i> (TA)	<i>r</i> (TC)	<i>r</i> (TG)	<i>r</i> (CA)	<i>r</i> (CT)	<i>r</i> (CG)	<i>r</i> (GA)	<i>r</i> (GT)	<i>r</i> (GC)
HKY+G	40	10431.265	10125.616	-5022.702	n/a	1.06	1.73	0.319	0.242	0.231	0.208	0.044	0.042	0.133	0.058	0.147	0.038	0.058	0.154	0.038	0.204	0.044	0.042
HKY+G+I	41	10440.257	10126.973	-5022.375	0.14	1.76	1.73	0.319	0.242	0.231	0.208	0.044	0.042	0.133	0.058	0.147	0.038	0.058	0.154	0.038	0.204	0.044	0.042
TN93+G	41	10440.313	10127.028	-5022.403	n/a	1.06	1.73	0.319	0.242	0.231	0.208	0.044	0.042	0.128	0.058	0.154	0.038	0.058	0.161	0.038	0.196	0.044	0.042
K2+G	37	10440.864	10158.125	-5041.971	n/a	1.05	1.72	0.250	0.250	0.250	0.250	0.046	0.046	0.158	0.046	0.158	0.046	0.046	0.158	0.046	0.158	0.046	0.046
HKY+I	40	10442.933	10137.284	-5028.536	0.32	n/a	1.69	0.319	0.242	0.231	0.208	0.044	0.042	0.132	0.059	0.146	0.038	0.059	0.153	0.038	0.202	0.044	0.042
T92+G	38	10443.182	10152.806	-5038.307	n/a	1.06	1.73	0.281	0.281	0.219	0.219	0.051	0.040	0.140	0.051	0.140	0.040	0.051	0.179	0.040	0.179	0.051	0.040
GTR+G	44	10445.557	10109.367	-5010.555	n/a	1.04	1.72	0.319	0.242	0.231	0.208	0.033	0.058	0.127	0.043	0.155	0.023	0.080	0.162	0.046	0.194	0.027	0.051
TN93+G+I	42	10449.242	10128.322	-5022.044	0.14	1.79	1.73	0.319	0.242	0.231	0.208	0.044	0.042	0.127	0.058	0.154	0.038	0.058	0.162	0.038	0.195	0.044	0.042
K2+G+I	38	10450.484	10160.108	-5041.958	0.10	1.50	1.72	0.250	0.250	0.250	0.250	0.046	0.046	0.158	0.046	0.158	0.046	0.046	0.158	0.046	0.158	0.046	0.046
TN93+I	41	10451.673	10138.389	-5028.083	0.32	n/a	1.69	0.319	0.242	0.231	0.208	0.044	0.042	0.126	0.059	0.154	0.038	0.059	0.161	0.038	0.193	0.044	0.042
T92+G+I	39	10452.774	10154.761	-5038.280	0.10	1.50	1.73	0.281	0.281	0.219	0.219	0.051	0.040	0.140	0.051	0.140	0.040	0.051	0.179	0.040	0.179	0.051	0.040
K2+I	37	10454.518	10171.778	-5048.798	0.32	n/a	1.68	0.250	0.250	0.250	0.250	0.047	0.047	0.157	0.047	0.157	0.047	0.047	0.157	0.047	0.157	0.047	0.047
GTR+G+I	45	10454.927	10111.102	-5010.417	0.10	1.46	1.72	0.319	0.242	0.231	0.208	0.033	0.058	0.127	0.043	0.155	0.023	0.080	0.162	0.046	0.194	0.027	0.051
T92+I	38	10457.073	10166.697	-5045.253	0.32	n/a	1.69	0.281	0.281	0.219	0.219	0.052	0.040	0.139	0.052	0.139	0.040	0.052	0.177	0.040	0.177	0.052	0.040
GTR+I	44	10460.300	10124.110	-5017.926	0.32	n/a	1.69	0.319	0.242	0.231	0.208	0.034	0.057	0.125	0.045	0.154	0.025	0.078	0.162	0.046	0.192	0.029	0.051
HKY	39	10545.283	10247.271	-5084.534	n/a	n/a	1.61	0.319	0.242	0.231	0.208	0.046	0.044	0.129	0.060	0.144	0.039	0.060	0.150	0.039	0.199	0.046	0.044
TN93	40	10554.488	10248.839	-5084.313	n/a	n/a	1.61	0.319	0.242	0.231	0.208	0.046	0.044	0.126	0.060	0.148	0.039	0.060	0.155	0.039	0.193	0.046	0.044
K2	36	10555.946	10280.844	-5104.336	n/a	n/a	1.61	0.250	0.250	0.250	0.250	0.048	0.048	0.154	0.048	0.154	0.048	0.048	0.154	0.048	0.154	0.048	0.048
T92	37	10557.604	10274.865	-5100.341	n/a	n/a	1.61	0.281	0.281	0.219	0.219	0.053	0.042	0.136	0.053	0.136	0.042	0.053	0.174	0.042	0.174	0.053	0.042
GTR	43	10563.027	10234.471	-5074.113	n/a	n/a	1.61	0.319	0.242	0.231	0.208	0.036	0.058	0.126	0.048	0.149	0.026	0.080	0.156	0.047	0.193	0.031	0.052
JC+G	36	10695.577	10420.474	-5174.151	n/a	1.14	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
JC+G+I	37	10704.586	10421.846	-5173.832	0.14	1.93	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
JC+I	36	10705.206	10430.104	-5178.965	0.31	n/a	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
JC	35	10798.084	10530.618	-5230.228	n/a	n/a	0.50	0.250	0.250	0.250	0.250	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083

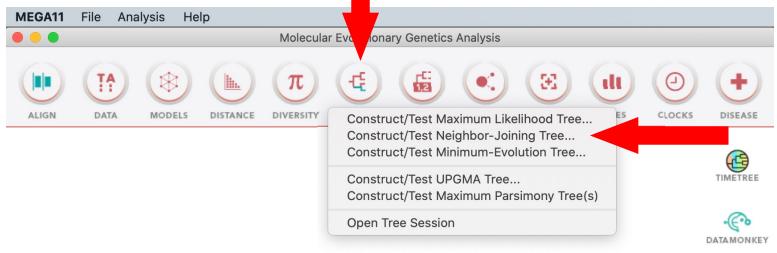
NOTE.- Models with the lowest BIC scores (Bayesian Information Criterion) are considered to describe the substitution pattern the best. For each model, AICc value (Akaike Information Criterion, corrected), Maximum Likelihood value (*InL*), and the number of parameters (including branch lengths) are also presented [1]. Non-uniformity of evolutionary rates among sites may be modeled by using a discrete Gamma distribution (+G) with 5 rate categories and by assuming that a certain fraction of sites are evolutionarily invariable (+1). Whenever applicable, estimates of gamma shape parameter and/or the estimated fraction of invariant sites are shown. Assumed or estimated values of transition/transversion bias (R) are shown for each model, as well. They are followed by nucleotide frequencies (f) and rates of base substitutions (*r*) for each nucleotide pair.Relative values of instantaneous *r* should be considered when evaluating them. For simplicity, sum of *r* values is made equal to 1 for each model. For estimating ML values, a tree topology was automatically computed. This analysis involved 19 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [2][3]

Abbreviations: TR: General Time Reversible; HKY: Hasegawa-Kishino-Yano; TN93: Tamura-Nei; T92: Tamura 3-parameter; K2: Kimura 2-parameter; JC: Jukes-Cantor./div>

1. Nei M. and Kumar S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.

2. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120.

3. Stecher G., Tamura K., and Kumar S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37:1237-1239.


Disclaimer: Although utmost care has been taken to ensure the correctness of the caption, the caption text is provided "as is" without any warranty of any kind. Authors advise the user to carefully check the caption prior to its use for any purpose and report any errors or problems to the authors immediately (www.megasoftware.net). In no event shall the authors and their employers be liable for any damages, including but not limited to special, consequential, or other damages. Authors specifically disclaim all other warranties expressed or implied, including but not limited to the determination of suitability of this caption text for a specific purpose, use, or application.

Imported sequence alignment: Model Choice

- MEGA11>Models and jModeltest2 use Bayesian Information • Criteria (BIC) to evaluate model fit to data
- BIC is a function of likelihood of the model given the data, the number of parameters in the model, and the number of data points
- Lowest BIC = best fit model •
- ABIC < 2: no difference in how these models fit the data ٠
- Δ BIC >2, <6: good evidence that the best model is the best fit •
- Δ BIC > 6, <10: strong evidence that the best model is the best fit ٠
- Δ BIC > 10: I can't even. •

Phylogeny Construction: Neighbor-Joining

RECENT PUBLICATIONS

Phylogeny Construction: Neighbor-Joining

		Analysis Preferences geny Reconstruction
Option		Setting
ANALYSIS		
Scope	\rightarrow	All Selected Taxa
Statistical Method	\rightarrow	Neighbor-joining
PHYLOGENY TEST	-	
Test of Phylogemy	- ~	/ None
No. of Bootstrap Replications	-	Bootstrap method
SUBSTITUTION MODEL		
Substitutions Type	\rightarrow	Nucleotide
Genetic Code Table	\rightarrow	Not Applicable
Model/Method	\rightarrow	Maximum Composite Likelihood
Fixed Transition/Transversion Ratio	\rightarrow	Not Applicable
Substitutions to Include	\rightarrow	d: Transitions + Transversions
RATES AND PATTERNS		
Rates among Sites	\rightarrow	Uniform Rates
Gamma Parameter	\rightarrow	Not Applicable
Pattern among Lineages	\rightarrow	Same (Homogeneous)
DATA SUBSET TO USE		
Gaps/Missing Data Treatment	\rightarrow	Pairwise deletion
Site Coverage Cutoff (%)	\rightarrow	Not Applicable
Select Codon Positions	\rightarrow	🗸 1st 🔽 2nd 🗹 3rd 🗹 Noncoding Sites
SYSTEM RESOURCE USAGE		
Number of Threads	\rightarrow	Not Applicable
? Help	- (Х Cancel 🕢 ОК

Allergy and

Phylogeny Construction: Neighbor-Joining

M	11: Ai	nalysis Preferences
Př	nylog	eny Reconstruction
Option		Setting
ANALYSI	S	
Scope	\rightarrow	All Selected Taxa
Statistical Method	\rightarrow	Neighbor-joining
PHYLOGENY TES	Г	
Test of Phylogeny	\rightarrow	Bootstrap method
No. of Bootstrap Replications	\rightarrow	500
SUBSTITUTION MODE	L	No. of differences
Substitutions Type	\rightarrow	p-distance Jukes-Cantor model
Genetic Code Table	\rightarrow	Kimura 2-parameter model
Model/Method	\rightarrow	✓ Tajima-Nei model
Fixed Transition/Transversion Ratio	\rightarrow	Tamura 3-parameter model
Substitutions to Include	\rightarrow	Maximum Composite Likelihood
RATES AND PATTERNS	S	LogDet (Tamura-Kumar)
Rates among Sites	\rightarrow	Uniform Rates
Gamma Parameter	\rightarrow	Not Applicable
Pattern among Lineages	\rightarrow	Same (Homogeneous)
DATA SUBSET TO US	E	
Gaps/Missing Data Treatment	\rightarrow	Pairwise deletion
Site Coverage Cutoff (%)	\rightarrow	Not Applicable
Select Codon Positions	\rightarrow	🗸 1st 🗹 2nd 🗹 3rd 🗹 Noncoding Sites
SYSTEM RESOURCE USAG	E	
Number of Threads	\rightarrow	8
(?) Help	×	Cancel 🕢 OK

Phylogeny Construction: Neighbor-Joining

			alysis Preferences eny Reconstruction
	Option		Setting
	ANALYSIS		
	Scope	\rightarrow	All Selected Taxa
	Statistical Method	\rightarrow	Neighbor-joining
	PHYLOGENY TEST		
	Test of Phylogeny	\rightarrow	Bootstrap method
	No. of Bootstrap Replications	\rightarrow	500
	SUBSTITUTION MODEL		
	Substitutions Type	\rightarrow	Nucleotide
	Genetic Code Table	\rightarrow	Not Applicable
	Model/Method	\rightarrow	Tajima-Nei model
	Fixed Transition/Transversion Ratio	\rightarrow	Not Applicable
	Substitutions to Include	\rightarrow	All
	RATES AND PATTERNS		
	itatee among entee	L	✓ Uniform Rates
	Gamma Parameter	\rightarrow	Gamma Distributed (G)
	Pattern among Lineages	\rightarrow	Same (Homogeneous)
	DATA SUBSET TO USE		
	Gaps/Missing Data Treatment	\rightarrow	Pairwise deletion
	Site Coverage Cutoff (%)	\rightarrow	Not Applicable
	Select Codon Positions	\rightarrow	✓ 1st ✓ 2nd ✓ 3rd ✓ Noncoding Sites
National Institute o	SYSTEM RESOURCE USAGE		
Allergy and	Number of Threads	\rightarrow	8
Infectious Diseases	? Help	×	Cancel 🕢 ок

Phylogeny Construction: Neighbor-Joining

	M11	: Ar	alysis Preferences
			eny Reconstruction
	Option		Setting
	ANALYSIS		-
	Scope	\rightarrow	All Selected Taxa
	Statistical Method	\rightarrow	Neighbor-joining
	PHYLOGENY TEST		
	Test of Phylogeny	\rightarrow	Bootstrap method
	No. of Bootstrap Replications	\rightarrow	500
	SUBSTITUTION MODEL		
	Substitutions Type	\rightarrow	Nucleotide
	Genetic Code Table	\rightarrow	Not Applicable
	Model/Method	\rightarrow	Tajima-Nei model
	Fixed Transition/Transversion Ratio	\rightarrow	Not Applicable
	Substitutions to Include	\rightarrow	All
	RATES AND PATTERNS		
	Rates among Sites	\rightarrow	Gamma Distributed (G)
	Gamma Parameter	\rightarrow	1.00
	Pattern among Lineages	\rightarrow	Same (Homogeneous)
	DATA SUBSET TO USE		Complete deletion
	Gaps/Missing Data Treatment	\rightarrow	✓ Pairwise deletion
	Site Coverage Cutoff (%)	\rightarrow	Partial deletion
	Select Codon Positions	\rightarrow	🗹 1st 🗹 2nd 🗹 3rd 🗹 Noncoding Sites
itute o	SYSTEM RESOURCE USAGE		
	Number of Threads	\rightarrow	8
seases	(?) Help	×	Cancel 🕢 ОК

National Instit Allergy and Infectious Dis

Phylogeny Construction: Neighbor-Joining

Evolutionary relationships of taxa

The evolutionary history was inferred using the Neighbor-Joining method [1]. The optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tajima-Nei method [3] and are in the units of the number of base substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). This analysis involved 19 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [4][5]

- 1. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425. 2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- 3. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269-285. 4. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution

Phylogeny Construction: Neighbor-Joining

•••	M11: Tree Explorer (MEGA11demo_PhyloAnalysis.mtsx)
🖯 🖶 🗋 📍 🚺 🖆 🎼 😫 🖓	
4	Original Tree Bootstrap Tree
Taxon Names	
,r≝ Tree Style	NM 000575.5 Homo sapiens interleukin 1 alpha (IL1A) transcript variant 1 mRNA
	XM 525866.2 PREDIC I ED: Pan troglodytes interleukin 1 alpha (IL1A) mRNA
Toggle Scaling of the Tree	XM 003804504.2 PREDICTED: Pan paniscus interieukin 1 alpha (ILTA) mkNA
Auto-size Tree	59 XM 004031622.2 PREDICTED: Gorilla gorilla gorilla interleukin 1 alpha (IL1A) transcript variant X1 mRNA
Drag to Resize Tree	- XM 002811788.2 PREDICTED: Pongo abelii interleukin 1 alpha (IL1A) mRNA
Drag to Resize Tree	100 XM 030827398.1 PREDICTED: Nomascus leucogenys interleukin 1 alpha (IL1A) transcript variant X1 mRNA
▶ CE Root on Midpoint	Nik 022/7/0611 PREDICTED. Hybotates information internetwin rapina (iEIA) transcript variant ATTIKIVA
Root on Outgroup	₈₅
	100 MM 001003157.2 Canis lupus tamiliaris interleukin 1 alpha (IL1A) mRNA
	97 - NM 001082500.2 Equus caballus interleukin 1 alpha (LLA) mRNA
V Tree Width	
Tree Height	
	96 NM 001280004.1 Hursipps if alreaded in Falpha (LLA) mRNA 85 NM 001009808.1 Ovis aries interleukin 1 alpha (IL1A) mRNA
Subtree	100 Ir NM 001290904.1 Bubalus bubalis interleukin 1 alpha (IL1A) mRNA
Branch Lengths	⁷⁹ NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA
Statistics/Frequency/Info	NM 001101684.1 Oryctolagus cuniculus interleukin 1 alpha (IL1A) mRNA
	MM 010554.4 Mus musculus interleukin 1 alpha (II1a) mRNA
Distance Scale	100 MM 017019.2 Rattus norvegicus interleukin 1 alpha (II1a) mRNA
Divergence Times	
Time Scale	н
Collapse/Expand Lineages	0.050
Compute	0
	Evolutionary relationships of taxa The evolutionary history was inferred using the Neighbor-Joining method [1]. The optimal tree is shown. The percentage of replicate trees in which the associated taxa
Display Caption	clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as boated and clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tajima-Nei method [3] and are in the units of the number of base substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). This analysis involved 19 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [4][5]
	 Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. <i>Molecular Biology and Evolution</i> 4:406-425. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. <i>Evolution</i> 39:783-791. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. <i>Molecular Biology and Evolution</i> 1:269-285. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. <i>Molecular Biology and Evolution</i> https://doi.org/10.1093/molbev/msab120.
SBL = 1.19530839	Ready

Phylogeny Construction: Neighbor-Joining

, ,	
	M11: Tree Explorer (MEGA11demo_PhyloAnalysis.mtsx)
🖥 🖶 🗋 🏋 🚺 🤌 🖷 🎼 🕩 🕘	
 Taxon Names 	Original Tree OBootstrap Tree
▶ Layout	
✓ Subtree	NM 000575.5 Homo sapiens interleukin 1 alpha (IL1A) transcript variant 1 mRNA
Drawing Options	XM 525866.2 PREDICTED: Pan troglodytes interleukin 1 alpha (IL1A) mRNA
✓ Use Subtree Draw Options	75 XM 003804504.2 PREDICTED: Pan paniscus interleukin 1 alpha (IL1A) mRNA
✓ Use Subtree Group Options	MM 004031622.2 PREDICTED: Gorilla gorilla gorilla interleukin 1 alpha (IL1A) transcript variant X1 mRNA
Display Subtree Separately	- XM 002811788.2 PREDICTED: Pongo abelii interleukin 1 alpha (IL1A) mRNA
	100 UXM 030827398.1 PREDICTED: Nomascus leucogenys interleukin 1 alpha (IL1A) transcript variant X1 mRNA
Pointer Tool	MM 001042757.1 Macaca mulatta interleukin 1 alpha (IL1A) mRNA
Root Tree	NM 001101684.1 Oryctolagus cuniculus interleukin 1 alpha (IL1A) mRNA
	s
Swap Subtree	MM 017019.2 Rattus norvegicus interleukin 1 alpha (II1a) mRNA
Flip Subtree	100 — NM 001003157.2 Canis lupus familiaris interleukin 1 alpha (IL1A) mRNA
Compress/Expand Subtree	NM 001009351.1 Felis catus interleukin 1 alpha (IL1A) mRNA
	97 - NM 001082500.2 Equus caballus interleukin 1 alpha (IL1A) mRNA
Branch Lengths	67 MM 214029.1 Sus scrofa interleukin 1 alpha (IL1A) mRNA
Statistics/Frequency/Info	96 NM 001280664.1 Tursiops truncatus interleukin 1 alpha (IL1A) mRNA
✓ Distance Scale	NM 001009808.1 Ovis aries interleukin 1 alpha (IL1A) mRNA
Divergence Times	100 r NM 001290904.1 Bubalus bubalis interleukin 1 alpha (IL1A) mRNA 79 NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA
	^{79 I} NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA
✓ Time Scale	н
Collapse/Expand Lineages	0.050
Compute	
Display Caption	Evolutionary relationships of taxa The evolutionary history was inferred using the Neighbor-Joining method [1]. The optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tajima-Nei method [3] and are in the units of the number of base substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). This analysis involved 19 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [4][5]
	1. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. <i>Molecular Biology and Evolution</i> 4:406-425.

- 2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- 3. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269-285.
- 4. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution

Ready

Phylogeny Construction: Neighbor-Joining

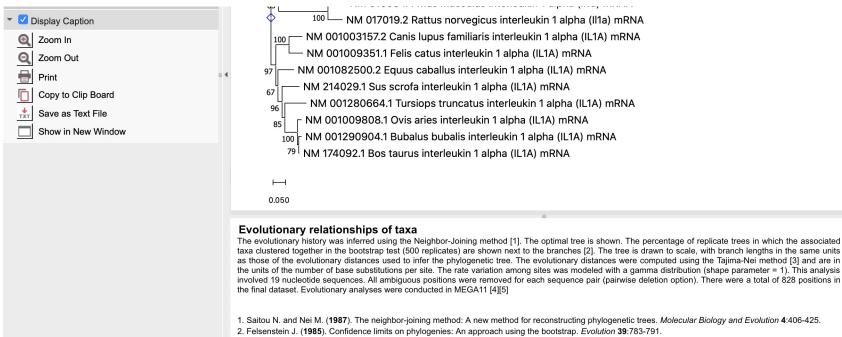
	M11: Tree Explorer (MEGA11demo_PhyloAnalysis.mtsx)
🖥 🖶 🔽 🕇 🚺 🖆 🖆 🕼 🎱	
🕨 🗹 Taxon Names	Original Tree OBootstrap Tree
▶ Layout	
▶ Subtree	NM 000575.5 Homo sapiens interleukin 1 alpha (IL1A) transcript variant 1 mRNA
Branch Lengths	⁷⁶ XM 525866.2 PREDICTED: Pan troglodytes interleukin 1 alpha (IL1A) mRNA
 Statistics/Frequency/Info 	⁷⁵ XM 003804504.2 PREDICTED: Pan paniscus interleukin 1 alpha (IL1A) mRNA
• Frequency Site Coverage Node IDs	M 004031622.2 PREDICTED: Gorilla gorilla interleukin 1 alpha (IL1A) transcript variant X1 mRNA
	+ XM 002811788.2 PREDICTED: Pongo abelii interleukin 1 alpha (IL1A) mRNA 100 XM 030827398.1 PREDICTED: Nomascus leucogenys interleukin 1 alpha (IL1A) transcript variant X1 mRNA
Font.	9 ¹ XM 032177081.1 PREDICTED: Hylobates moloch interleukin 1 alpha (IL1A) transcript variant X1 mRNA
8 C Font Size	NM 001042757.1 Macaca mulatta interleukin 1 alpha (IL1A) mRNA
Placement Automatic ᅌ	NM 001101684.1 Oryctolagus cuniculus interleukin 1 alpha (IL1A) mRNA
Distance From Node (Pixels)	85 NM 010554.4 Mus musculus interleukin 1 alpha (II1a) mRNA
Horizontal 3	100 — NM 017019.2 Rattus norvegicus interleukin 1 alpha (II1a) mRNA
Vertical 2	100 MM 001003157.2 Canis lupus familiaris interleukin 1 alpha (IL1A) mRNA
Hide Values Lower Than 0° %	NM 001009351.1 Felis catus interleukin 1 alpha (IL1A) mRNA
	97 MM 001082500.2 Equus caballus interleukin 1 alpha (IL1A) mRNA
Distance Scale	⁶⁷ NM 214029.1 Sus scrofa interleukin 1 alpha (IL1A) mRNA
Divergence Times	96 96 NM 001280664.1 Tursiops truncatus interleukin 1 alpha (IL1A) mRNA 97 NM 001009808.1 Ovis aries interleukin 1 alpha (IL1A) mRNA
▶ ✓ Time Scale	$_{100 \ \text{F}}$ NM 001290904.1 Bubalus bubalis interleukin 1 alpha (IL1A) mRNA
 Collapse/Expand Lineages 	⁷⁹ NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA
 Compute 	
	0.050
Display Caption	
	Evolutionary relationships of taxa

The evolutionary history was inferred using the Neighbor-Joining method [1]. The optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tajima-Nei method [3] and are in the units of the number of base substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). This analysis involved 19 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [4][5]

1. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Ready

- 2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- 3. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269-285.
- 4. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution


Phylogeny Construction: Neighbor-Joining

	M11: Tree Explorer (MEGA11demo_PhyloAnalysis.mtsx)
3 ☐ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Original Tree ◯ Bootstrap Tree
Layout	
Subtree	NM 000575.5 Homo sapiens interleukin 1 alpha (IL1A) transcript variant 1 mRNA
Branch Lengths	76 XM 525866.2 PREDICTED: Pan troglodytes interleukin 1 alpha (IL1A) mRNA
Statistics/Frequency/Info	⁷⁵ XM 003804504.2 PREDICTED: Pan paniscus interleukin 1 alpha (IL1A) mRNA
V Distance Scale	XM 004031622.2 PREDICTED: Gorilla gorilla gorilla interleukin 1 alpha (IL1A) transcript variant X1 mRNA
	- XM 002811788.2 PREDICTED: Pongo abelii interleukin 1 alpha (IL1A) mRNA
Divergence Times	100 XM 030827398.1 PREDICTED: Nomascus leucogenys interleukin 1 alpha (IL1A) transcript variant X1 mRNA
✓ Time Scale	^{99 L} XM 032177081.1 PREDICTED: Hylobates moloch interleukin 1 alpha (IL1A) transcript variant X1 mRNA MM 001042757.1 Macaca mulatta interleukin 1 alpha (IL1A) mRNA
Collapse/Expand Lineages	NM 001042/37:1 Madada Indiata Intereukin 1 alpha (ILIA) Intrive
Compute	85 M 010554.4 Mus musculus interleukin 1 alpha (II1a) mRNA
Compute Condensed Tree	MK 017019.2 Rattus norvegicus interleukin 1 alpha (II1a) mRNA
	100 pr NM 001003157.2 Canis lupus familiaris interleukin 1 alpha (IL1A) mRNA
50 Cutoff Value	MM 001009351.1 Felis catus interleukin 1 alpha (IL1A) mRNA
Compute Consensus Tree	97 MM 001082500.2 Equus caballus interleukin 1 alpha (IL1A) mRNA
50 Cutoff Value	^U MM 214029.1 Sus scrofa interleukin 1 alpha (IL1A) mRNA
	96 NM 001280664.1 Tursiops truncatus interleukin 1 alpha (IL1A) mRNA
Compute Timetree	85 NM 001009808.1 Ovis aries interleukin 1 alpha (IL1A) mRNA
Calibrate Molecular Clock	¹⁰⁰ [⁻ NM 001290904.1 Bubalus bubalis interleukin 1 alpha (IL1A) mRNA ⁷⁹ NM 174092.1 Bos taurus interleukin 1 alpha (IL1A) mRNA
ρ CorrTest (for auto-correlation of rates)	<u>н</u>
Display Caption	0.050

The evolutionary history was inferred using the Neighbor-Joining method [1]. The optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tajima-Nei method [3] and are in the units of the number of base substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). This analysis involved 19 nucleotide sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There were a total of 828 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [4][5]

- 1. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
- 2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- 3. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269-285.
- 4. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution

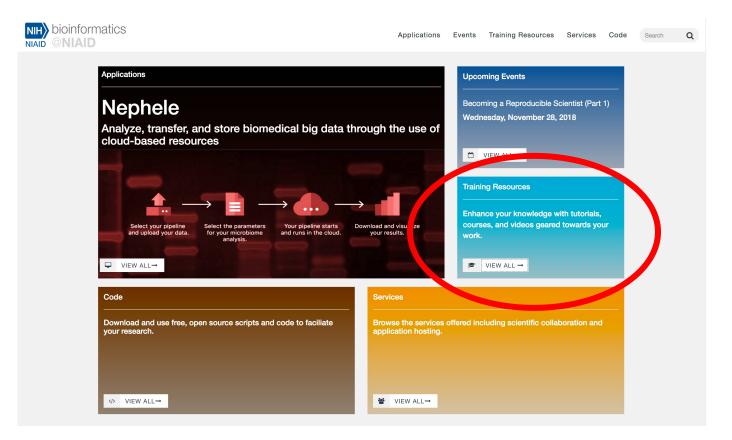
Phylogeny Construction: The Caption Window

- 3. Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269-285.
- 4. Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution

Ready

SBL = 1.19530839

Recapitulation


Where have we been? What have we done?

- What is a phylogenetic tree?
- How to build trees
 - Distance
 - Parsimony
- Calculated bootstrap support
- Calculated a neighbor-joining tree with MEGA11

Seminar Follow-Up Site

https://bioinformatics.niaid.nih.gov

National Institute of Allergy and Infectious Diseases

Seminar Follow-Up Site

https://bioinformatics.niaid.nih.gov

NIH bioinformatics

Applications Events Training Resources Services Code

3D Printing

- Biostatistics
- General Bioinformatics
- wext Generation Sequencing. Phylogenetics and Similarity
- Scientific Programming
- Reproducible Science
- Systems Biology

Welcome to the Training Resources section!

Here you can find training materials on a wide variety of topics from next generation sequencing (NGS) to molecular dynamics. Navigate through various topics on the left side of this page to find an appropriate course.

Course content ranges from short videos to PDF and PowerPoint files.

Looking for a particular topic that is not found here? Contact us and we will point you in the right direction.

Related Events

Connectivity Map Workshop

Date: Tuesday, December 04, 2018 Location: Broad Institute, 415 Main St., Cambridge, MA 02142 Classification: Workshop

Search

Q

BioC 2019

Date: Tuesday, June 25, 2019 Location: Rockefeller University Classification: Workshop

Related Code

Blender_PNG_from_X3D.py

Description: Imports a monochrome .x3d model into Blender and automatically generates a snapshot in .png format and exports a model in .sti format.

Blender_STL_Cleanup.py

Description: Imports a .wrl file into Blender, cleans the mesh, and exports .stl, .x3d, and .blend formats.

Blender_VRML_cleanup_ribbon.py

Description: Imports a .wrl model into Blender

National Institute of Allergy and Infectious Diseases

Email us!

bioinformatics@niaid.nih.gov

National Institute of Allergy and Infectious Diseases

62

Next

Wednesday, 13 March

jModeltest: Fitting analysis parameters to your data

IQtree: Maximum Likelihood

MrBayes: Robust statistical phylogeny inference

FigTree: Making publication-quality tree figures

R/ggtree2: Making annotated tree figures in R

