DS4-L: Hands-on training of Git and GitHub — Lab 5/19/16
Michael Dolan, Ph.D.

Tutorial 1

Objectives: Download and install Git, configure Git, initialize a new repository, examine
.git directory, create file in working directory, add it to the staging index, commit the
file, check to see where the HEAD pointer is pointing, modify file and make a second
commit, check HEAD pointer, create a new branch

Exercise 1 — Install Git

1. Go to the following link and download the latest version of Git:

https://git-scm.com/

2. Click ‘OK’ or ‘Next’ for all options, then finish (you don't have to review notes).
3. Go to:
Programs > Git > Git Bash
~ If a review of UNIX commands is needed, we will spend some time doing so.~
4. Which directory are we in?
pwd
5. Change to Desktop directory

cd Desktop
pwd

6. To see if git is installed correctly and to see git options, type:
git

7. To see which version of git is installed, type:
git --version
Note: Make sure to use TWO DASHES!

8. Configure git by typing:

git config --global user.name “yourGitUserName”

where yourGitUserName is a name that you would like to use with Git (and later
when signing up on GitHub)

9. Configure git by typing:
git config --global user.email “your@email.com”

where your@email.com is the email that you would like to use with Git (and later
when signing up on GitHub)

10. Check your configs:
git config --list

11. Help!
git --help or just git

git --help log < will open a new browser

Exercise 2 - Initializing a new repo

12. Make and change into a new directory which will contain our new repo:
mkdir new_repo
cd new_repo
pwd

13. Initialize a new repo:
gitinit

A new, empty Git repository is created. Well....not quite empty.
14. List contents:

Is

Nothing is seen. Use options to see “hidden files:”

Is —al
The .git directory is seen. A .git directory is essentially everything that is needed to
define a local Git repo.
15. Change into and view contents of .git directory:
cd .git
pwd
s
Exercise 3 - Add and commiit file(s) to new repo
16. Go back to new_repo directory:
cd ..
17. Check status:
git status
18. Create a file with text:
echo hello > filel.txt

19. Check to see if file is present and contents of file:

Is
cat filel.txt

20. Add the file to the staging index:
git add filel.txt

Note: In Unix systems the end of a line is represented with a line feed (LF). In
Windows, a line is represented with a carriage return (CR) and a line feed (LF)
hence “CRLF.”

21. Check status:

git status

22. Commit the file to the local repo:
git commit —m “Commit first file”

Note: The SHAT1 hash is a cryptographic hash function, but used here to ensure data
integrity and tracking.

23. Check status:
git status
Exercise 4 - Follow HEAD pointer
24. Let’s check the log to see what was done:
git log
25. Check branches:
git branch
26. Look at HEAD pointer:
cd .git
s
cat HEAD
27. Follow the path:
cd refs/heads/
28. Look in ‘master’ file:
cat master
Note: The HEAD pointer points to the last commit on the master branch.

29. Get back to working directory:

cd../../ .
pwd

30. List files in working directory:
Is

31. Make a change to filel.txt:
echo NIEHS >> filel.txt
Note: Use a double redirect (>>)
32. Check contents of filel.txt:
cat filel.txt

33. Compare differences between filel.txt in the repo and what is in your working
directory:

git diff
34. Add and commit changes:

git add filel.txt
git commit —-m “Modify filel.txt contents”

35. Let’s check the log to see what was done:

git log

Note: Two SHAs are seen with the latest commit on top.
36. Take another look at where HEAD is pointing:

cat .git/refs/heads/master

Note: HEAD now points to the last commit in the current branch which is master.
Exercise 5 - Create and merge a new branch while resolving merge conflicts
37. Look at current branch:

git branch
38. Create a new branch:

git branch new_feature

39. Verify branch creation:

git branch
40. Take a look at .git folder changes:
Is —al .git/refs/heads
cat .git/refs/heads/new_feature
cat .git/refs/heads/master
Note: Each branch points to same commit.
41. Switch to new branch:
git checkout new_feature
42. Confirm switch:
git branch
43. Modify filel.txt:
echo “New feature” > filel.txt
44. Add and commit at same time:
git commit —am “Introduce new feature”
45. Check log using a more compressed view:
git log --oneline
46. Switch back to master branch, verify, check log:
git checkout master
git branch
git log --oneline

47. Make a change to filel.txt in the master branch and commit:

echo banana > filel.txt
git commit —am “Introduce banana”

48. Compare the two branches:

git diff master..new_feature

Note: Two dots!
49. Merge changes in new branch into master branch. From master branch:
git merge new_feature
Note: No merge took place. There is a conflict that must be resolved.
50. Check status:
git status
51. Look at file using notepad:
notepad filel.txt
52. Fix the conflict manually and save the file.
53. Commit to resolve merge:
git commit

Note: No message needed when in the middle of a merge. A standard merge
message is used instead.

54. Type the following to see a nice graphical representation of what we just did:

git log --graph --oneline --all --decorate

END

