Example ======= To classify a single image: .. code-block:: python from tbpcxr.model import Model from tbpcxr.utilities import read_dcm outlier_model = Model.load_outlier_pcamodel() img = read_dcm(path_to_file) arr = outlier_model.to_observations([img]) if outlier_model.outlier_predictor(arr)[0] == -1: print("{} is an outlier".format(path_to_file)) Multiple images can efficiently be processed by using Python's `map` function, which .. code-block:: python from tbpcxr.model import Model from tbpcxr.utilities import read_dcm outlier_model = Model.load_outlier_pcamodel() arr = outlier_model.to_observations(map(read_dcm, image_file_list)) results = outlier_model.outlier_predictor(arr) for fn in [fn for fn, o in zip(image_file_list, results) if o == -1]: print("{} is an outlier".format(fn))