Example¶
To classify a single image:
from tbpcxr.model import Model
from tbpcxr.utilities import read_dcm
outlier_model = Model.load_outlier_pcamodel()
img = read_dcm(path_to_file)
arr = outlier_model.to_observations([img])
if outlier_model.outlier_predictor(arr)[0] == -1:
print("{} is an outlier".format(path_to_file))
Multiple images can efficiently be processed by using Python’s map function, which
from tbpcxr.model import Model
from tbpcxr.utilities import read_dcm
outlier_model = Model.load_outlier_pcamodel()
arr = outlier_model.to_observations(map(read_dcm, image_file_list))
results = outlier_model.outlier_predictor(arr)
for fn in [fn for fn, o in zip(image_file_list, results) if o == -1]:
print("{} is an outlier".format(fn))